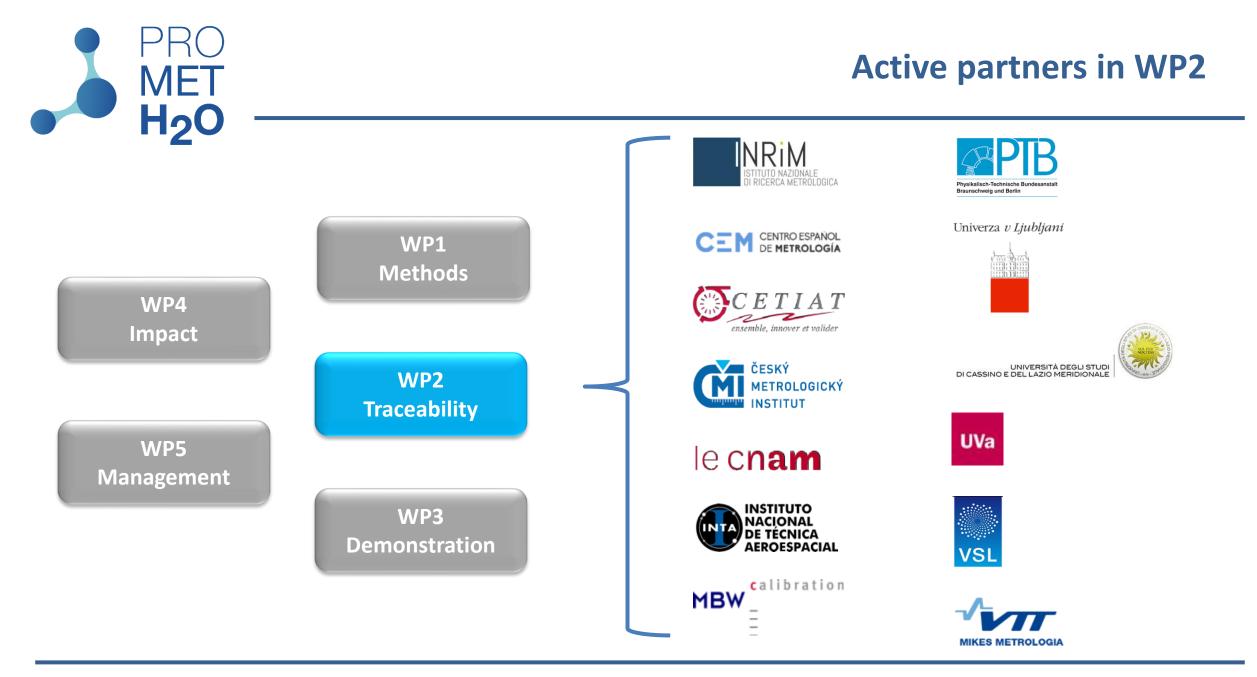


20IND06 PROMETH20


WP2

Provision of robust traceability to trace water measurements in real humid gas mixtures

Lead INRIM

14th of June 2021

Objectives of the project in WP2

The specific objectives of this project are:

- 1. To improve trace water measurement methods in the amount fraction range between 5 parts in 10⁶ (5 ppm) and 5 parts in 10⁹ (5 ppb) or, equivalently, between -65 °C and -105 °C frost point temperature at 0.1 MPa with a relative standard uncertainty between 3 % and 8 %, from the upper to lower range, respectively.
- 2. To provide robust traceability to trace water measurements by developing suitable primary standards for the amount fraction range from 5 ppm to 5 ppb (or -65 °C to -105 °C frost point temperature at 0.1 MPa) with a relative standard uncertainty less than 3 % to 8 %, in selected gas matrices of air, N₂, Ar and H₂ at pressures up to 1 MPa.
- 3. To improve the present knowledge of thermophysical data of real humid gas mixtures, in particular the water vapour enhancement in N₂ and Ar in the temperature range from -30 °C to -90 °C and at pressures from 0.1 MPa to above 1 MPa.
- 4. To demonstrate improved trace water measurement methods between 5 ppm and 5 ppb or, equivalently, between -65 °C and -105 °C frost point temperature at 0.1 MPa, in two industrially relevant facilities (test beds).
- 5. To facilitate the take up of the technology and measurement infrastructure developed in the project by the measurement supply chain, standards developing organisations (CIPM, IAPWS, JCS) and end users (instrument manufacturers, gas providers).

WP2 - Deliverables

	ME H ₂	T	-	_									WP2 - De	liverabl
	Month settinition A2.1.1 A2.1.2 A2.1.3 A2.1.4	1 1- 7-un Tasl		Aug-21 w	Sep-21	2 (A2.1.7)	D3		Report on the oprimary trace we standards described uncers species in which can be generated fraction range for (-65 °C to -105) standard uncers to 8 % in select pressures up to the standard select option of the standard select option of the select option option of the select option optio	vater va cribing ertainty ch refer ted with from 5 °C) wi tainty I ted gas	apour the range, the and the gas ence values n a target ppm to 5 ppb th relative ess than 3 % s matrices at		INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, CETIAT	Nov 2023 (M30)
3 (A2.3.4	A2.1.5 A2.1.6	D4			s a t J	User guide relate oftware tool(s) o application to esti enhancement fac incertainty in wat Ar and H ₂ in the to between -30 °C a	f a web-base mate the tor and er vapour in emperature ra	N ₂ , ange	User guide		UNICAS, V	TT Nov 2 (M30	D3	
3 (A2.3.5)	D5			val for vap ten to -	idation the e pour pera 90 °	on the developm on of correlation enhancement of in N ₂ , Ar and H ₂ ature range from C and at pressur a to above 1 MPa	equations water in the -30 °C es from	Rep	port	CET VSL	IAT, CMI, 🛛 (Jan 2024 M32)	D4	D5

PRC

Development and validation of primary standards for trace water vapour measurements in ultra-pure gases

- by using a variety of
 complementary generation
 techniques (Task 2.1)
- by improving the knowledge of the non-ideal behaviour of humid gas mixtures (Task 2.2 Task 2.3)

Task 2.1Development of primary humidity standards fortrace water vapour in an increased range of gasmatrices

Task 2.2 Measurement of the enhancement factor in selected humid gas mixtures

Task 2.3

Development of correlation equations for humid gas mixtures between -30 °C and -90 °C from 0.1 MPa to above 1 MPa

To develop, extend or improve primary standards that in combination will generate reference humidity quantities, such as dew/frost-point temperature and amount fraction of water vapour, in the targeted range of pressure and temperature.

The amount fraction range from 5 ppm to 5 ppb (or -65 °C to -105 °C frost point temperature at 0.1 MPa) with a relative standard uncertainty less than 3 % to 8 %, in selected gas matrices of air, N_2 , Ar and H_2 at pressures up to 1 MPa.

- Thermodynamic-based standard generators with the ability to generate frost-point temperatures between -65 °C and -105 °C with a target uncertainty of 0.35 °C at the lowest temperature.
- Water vapour amount fraction generators aimed to cover the range between 5 μmol·mol⁻¹ (5 ppm) and 5 nmol·mol⁻¹ (5 ppb) with a standard relative uncertainty of 3 % to 8 %, respectively.

Task 2.1 – Present and improved capabilities

X_w / T_fp at 0.1 MPa	5 ppb /-105 °C	14 ppb/-100 °C	50 ppb/ -93 °C	100 ppb/-90 °C	500 ppb / - 80 °C	1 ppm / -76 °C	5 ppm /- 65 °C	Ar	N2	H2	AIR
INRIM		SATURATION-BA	SED LOW FROST P	OINT GEN.							
CMI					HIGH PRESSURE SA	TURATION -BASE	GENERATOR				
CETIAT				MIXED-FLOW HUN	AIDITY GEN.						
INITA						NIDENCATION	CED CENERATOR				
INTA					HIGH-PRESSURE CO	DNDENSATION-BA	SED GENERATOR				
РТВ				COULOMETRIC-BA	SED AMOUNT FRAG						
UL				HIGH-PRESSURE FR	ROST POINT GENER/	ATOR				?	
VSL				(GRAVIMETRIC) PE	RMEATION-BASED	AMOUNT FRACTIO	ON GEN.				
VIII			CATURATION DA								
VTT			SATURATION-BAS	SED FROST POINT G	itN.						
OPERATING PRESSURE	0.1 MPa	0.2 MPa	0.5 MPa	0.6 MPa	0.7 MPa	0.8 MPa	1 MPa	Ar	N2	H2	AIR

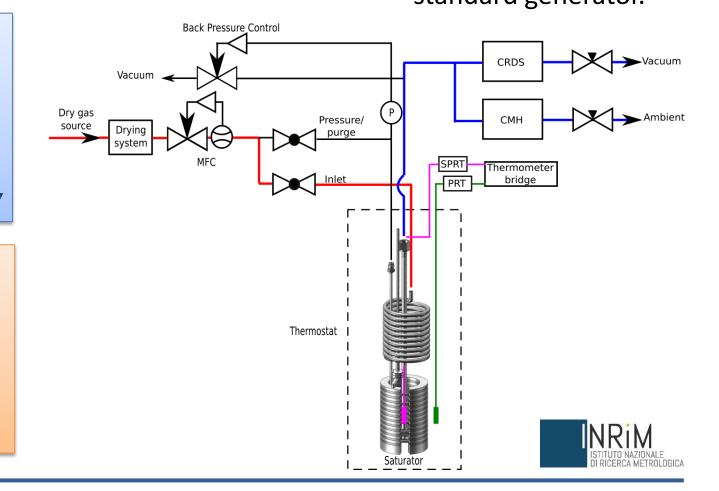
Task 2.1 - Activities

Activity number	Activity description	Partners
A2.1.1 M21	INRIM will improve its thermodynamic saturation-based primary standard generator to generate the humid gas mixtures standard in nitrogen and argon at pressures up to 0.5 MPa and to extend the lower limit of frost-point temperature to -105 °C with a standard uncertainty of 0.35 °C. VTT will extend its saturation-based primary standard generator to -100 °C at 0.11 MPa to generate humid gas mixtures in nitrogen and air . INRIM and VTT will use such primary humidity standards to provide traceability to trace water analysers, such as the CC-FS-CRDS spectrometer (A1.1.1), high-quality CMH, and CE-FM spectroscopy hygrometer (A1.1.4) and underpin their validation in A1.2.1 to A1.2.3.	INRIM, VTT
A2.1.2 M18	CMI, INTA and UL will upgrade their saturation-based generators to produce humid gas mixtures in nitrogen and argon to extend the lower limit of reference frost-point temperatures to -90 °C and at pressures up to 1 MPa and above, with standard uncertainty of 0.25 °C at -90 °C. Only for INTA the pressure will go to 0.5 MPa .	CMI , INTA, UL
A2.1.3 M30	PTB, with instrument support from MBW, will extend the lower limit of a coulometric-based primary standard generator to generate down to 5 ppb reference amount fractions of water vapour in nitrogen at 0.11 MPa and will develop the primary humidity standard for use with argon. The development of such a standard by PTB will extend the reference values with relative standard uncertainties of 8 % at the lower limit, not including the "zero gas" uncertainty, which is conservatively estimated to be ±3 ppb. PTB will use the standard to test selected instruments for amount fraction water vapour measurement, such as CC-FS-CRDS spectrometer (A1.1.1), high-quality CMH, CE-FM spectroscopy hygrometer (A1.1.4), or far-UV system (A1.1.2). PTB will take the decision about which hygrometers will be used for the test at a later stage.	PTB, MBW

Task 2.1 - Activities

Activity number	Activity description	Partners
A2.1.4 M21	VSL will set up a permeation system based on a passivated magnetic suspension balance to generate primary standard of water amount fractions in nitrogen and hydrogen in the range of 50 nmol/mol up to 5 µmol/mol following ISO 6145-10 and ISO 6145-7.	VSL
A2.1.5 M18	CETIAT will upgrade its mixed flow generator in pressure, from 0.1 MPa up to 1 MPa , and in frost point temperature, from -85 °C down to -90 °C, possibly -95 °C, with a standard uncertainty of 0.25°C.	CETIAT
A2.1.6 M30	INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, and CETIAT using the results from A2.1.1 to A2.1.5 will write a summary report on the development of the trace water vapour standards describing the range and uncertainty achievable and the gas species in which reference humidity values can be generated.	INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, CETIAT
A2.1.7 M30	INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, and CETIAT will review the report from A2.1.6 and will send it to the coordinator. Once the report has been agreed by the consortium, the coordinator on behalf of INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, and CETIAT will then submit it to EURAMET as D3: 'Report on the development of primary trace water vapour standards describing the range, the estimated uncertainty and the gas species in which reference values can be generated with a target fraction range from 5 ppm to 5 ppb (-65 °C to -105 °C) with relative standard uncertainty less than 3 % to 8 % in selected gas matrices at pressures up to 1 MPa'.	INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, CETIAT

INRIM development in WP2-Task 2.1


□ A2.1.1 (M21): Improvement of its thermodynamic saturation-based primary standard generator.

- Frost point temperature: -99 °C to -20 °C
- U(T=-95 °C) = 0.05 °C
- *P*: 200 hPa to 1100 hPa
- *x*_w: 15 nmol/mol to 0.005 mol/mol
- Nitrogen

- Frost point temperature: -105 °C to -20 °C
- U(T=-105 °C) = 0.35 °C
- *P*: 200 hPa to 5000 hPa
- *x*_w: 5 nmol/mol to 0.005 mol/mol
- Nitrogen, argon, (air)

FEBRUARY 2023

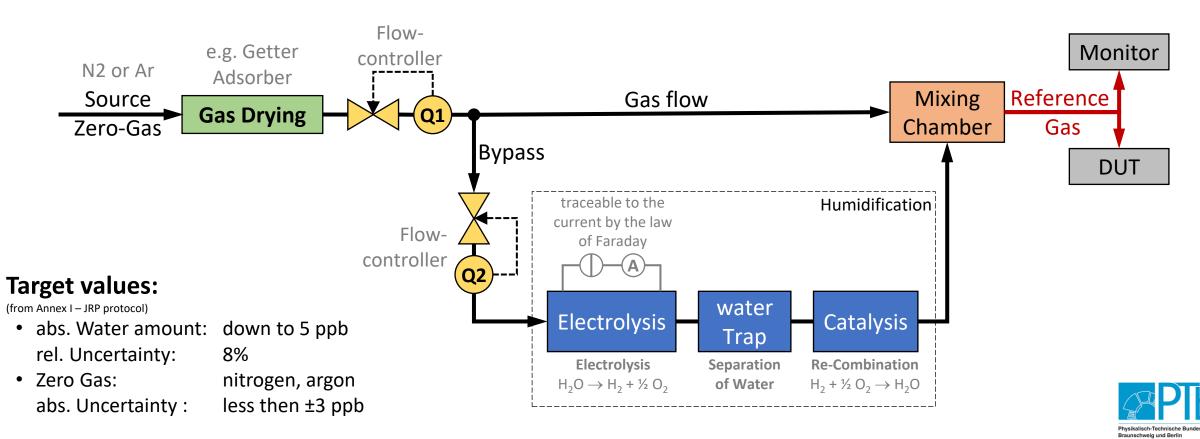
• Activity 2.1.3 – M30 (Development/Testing):

Development of a coulometric principal standard to generate water vapour in nitrogen and argon. Tests of selected instruments with the generator. (PTB, MBW)

• Activity 2.1.6 – M30 (Report):

Summary report on the development of the trace water vapour standards. (INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, CETIAT)

• Activity 2.1.7 – M30 (Review):


Review of the report (A2.1.6) and send it to the coordinator. (INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, CETIAT)

Activity 2.1.3 (PTB Development)

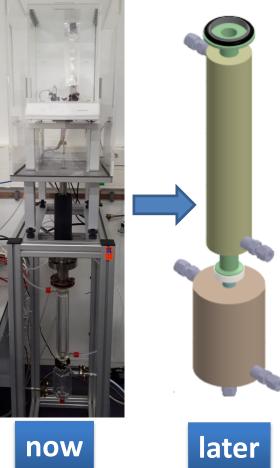
Basic setup of the Coulometric Trace Water Generator (CTWG)

Steps already in progress

- Recruiting of additional personal
- Development of a concept (Basic setup)
- Preliminary tests (Zero-Gas Quality)

Schedule for major steps

- Elaboration of design 21/22
- Acquisition of hardware end 21/22
- Construction of the apparatus
- Commissioning and measurements


21/22 end 21/22 22/23 23

VSL contribution to WP2-Task 2.1

□ A2.1.4 (M21): Permeation system based on a passivated magnetic suspension balance.

- Set up a permeation system based on a passivated magnetic suspension balance to generate primary standard of water amount fractions following ISO 6145-10 and ISO 6145-7.
- Target range: in the range of 50 nmol/mol up to 5 μmol/mol
- Matrix gases: N₂ and H₂

Initial steps to take:

- 1) Complete design and manufacturing metal chamber with reduced nr of connections
- 2) Install new permeation chamber and surrounding dry zone
- 3) Testing and validation of the new system

To evaluate the non-ideality of gas mixtures with trace amount of water.

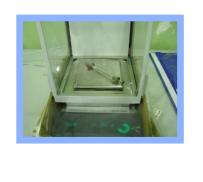
Improving of the data available for water vapour enhancement factor in air, N_2 , Ar and H_2 in the frost-point temperature range between -90 °C and -30 °C and pressures from 0.1 MPa to above 1 MPa.

A series of cross domain experiments that rely on trace humidity standards developed in Task 2.1 and amount-of-substance measurements methods made available in WP1.

Task 2.2 - Activities

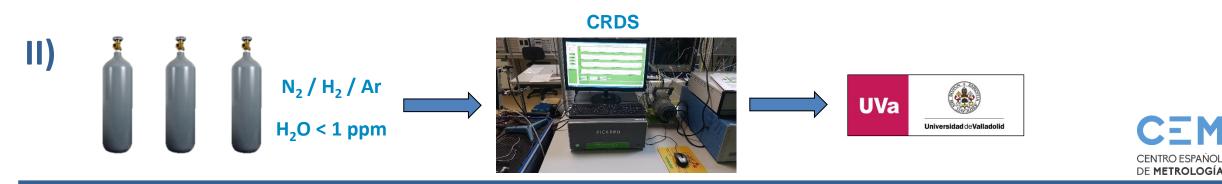
		AMOUNT FRACTI	ON AND EQUIV.	FROST POINT TEM	IPERATURE			MATRIX GA	s
X_w / T_fp at 0.1 MPa	100 ppb/-90 °C		-	5 ppm / - 65 °C	83 ppm / -40 °C	382 ppm/ -30 °C	Ar	N2	H2
CEM				GAS MIXTURES	IN CYLINDERS				
СМІ		HIGH-PRESSURE							
CETIAT, CNAM				ASED TRACE WATE	R ANALYSER				
INTA			HIGH-PRESSUR		BASED GENERATO	R			
VSL		HIGH-PRESSURE	FROST POINT GE	NERATOR					
UL		HIGH-PRESSURE	FROST POINT GE	NERATOR					
UVa			HYGROMETER						
OPERATING PRESSURE	0.1 MPa	0.2 MPa	0.5 MPa	0.7 MPa	0.8 MPa	1 MPa	Ar	N2	H2

Activity number	Activity description	Partners
A2.2.1 M24	CNAM and CETIAT using the facility developed in A2.1.5, will upgrade CNAM microwave-based trace water analyser to perform measurements of the enhancement of water vapour in nitrogen and argon in the frost-point temperature range between -80 °C and -30 °C at selected pressures from 0.1 MPa to above 1 MPa .	CNAM , CETIAT
A2.2.2 M24	CMI and UL , using the upgraded saturation-based generators from A2.1.2, will perform independent measurements of the enhancement of water vapour in nitrogen and argon in the frost-point temperature range between -90 °C and -30 °C . VSL , using its existing standard, will confirm the measurements to -80 °C at selected pressures from 0.1 MPa to above 1 MPa . These independent measurements will evaluate the non-ideality of gas mixtures (i.e., enhancement factor) with trace amount of water by comparing humid gas mixtures generated by frost-point temperature standards with corresponding humidity quantities as measured by amount-of-substance fraction analyser(s).	CMI , VSL, UL
A2.2.3 M18	CEM , will produce cylinders containing static, pressurised humid gas reference mixtures in matrices of nitrogen , argon and hydrogen with amount fractions of water vapour down to 1 µmol mol ⁻¹ . The target standard uncertainty for the cylinders is 3 % of value. The gas cylinders will be used by UVa and will further develop and upgrade its microwave-based frost point hygrometer.	CEM, UVa


Activity number	Activity description	Partners
A2.2.4 M24	UVa and INTA, using the upgraded saturation-based generator from A2.1.2 and upgraded microwave-based frost point hygrometer in A2.2.3, will perform measurements of the enhancement of water vapour in nitrogen, argon and hydrogen in the frost-point temperature range between -75 °C and -30 °C at selected pressures from 0.1 MPa to above 1 MPa. These measurements will evaluate the non-ideality of gas mixtures (i.e., enhancement factor) with trace amount of water by comparing humid gas mixtures generated by trace humidity standards (saturator-based generators) with corresponding humidity quantities as measured by amount-of-substance fraction analyser.	UVa, INTA
A2.2.5 M27	CNAM , using the results from A2.2.1 to A2.2.4 will prepare a report stating the improved measurements for water vapour enhancement factor in nitrogen, argon and hydrogen at selected temperatures and pressures, in the frost-point temperature range between -90 °C and -30 °C and pressure range from 0.1 MPa to above 1 MPa. CNAM, CETIAT, CMI, VSL, UL, INTA, CEM, UVa will review the report and provide feedback.	CNAM, CETIAT, CMI, VSL, UL, INTA, CEM, Uva

CEM contribution to WP2-Task 2.2

A2.2.3 (M18): Production of cylinders containing humid gas reference mixtures in matrices of N₂, Ar and H₂ with x_w down to 1 µmol mol⁻¹.


ISO 6142-1:2015 Gas analysis -- Preparation of calibration gas mixtures --Part 1: Gravimetric method for Class I mixtures

Task 2.3: Development of correlation equations for humid gas mixtures between -30 °C and -90 °C from 0.1 MPa to above 1 MPa

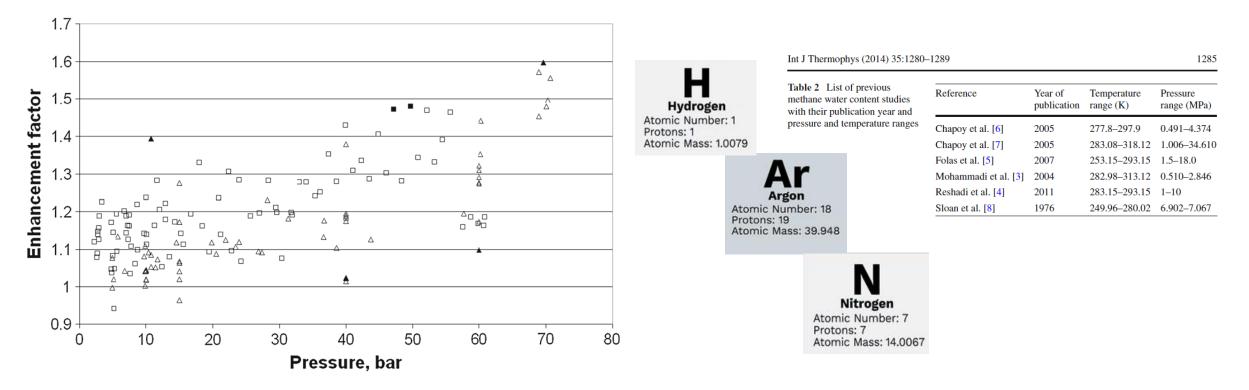
GOAL

- To improve the humid gas mixtures correlation equations in the temperature range between -30 °C and -90 °C at pressures from 0.1 MPa to above 1 MPa for N₂, Ar and H₂.
- To offer a tool to end users for a better comparability of trace humidity measurements based on different principles and gas matrices.

Modelling, simulation and validation of the correlation equations for the water vapour enhancement factor starting from existing non-ideal humid gas mixtures models.

			MATRIX GAS							
X_w / T_fp at 0.1 MPa	100 ppb/-90 °C	500 ppb / - 80 °C	1 ppm / -76 °C	5 ppm / - 65 °C	83 ppm / -40 °C	382 ppm/ -30 °C	Ar	N2	H2	
VTT		MODELLING AND	CORRELATION E	QUATIONS						
UNICAS			MODELLING AN	D SIMULATION						
OPERATING PRESSURE	0.1 MPa	0.2 MPa	0.5 MPa	0.7 MPa	0.8 MPa	1 MPa	Ar	N2	H2	

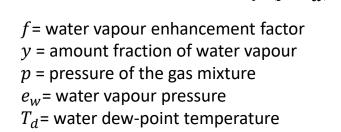
Activity number	Activity description	Partners
A2.3.1 M23	UNICAS will collect information from reports and published scientific papers related to non-ideal humid gas mixtures models. Moreover, UNICAS will review and compare the existing non-ideal humid gas mixtures models , with particular emphasis for nitrogen, argon and hydrogen.	UNICAS
A2.3.2 M29	VTT, and UNICAS, using the report on the improved measurements for water vapour enhancement factors from A2.2.5 and the reviewed information from A2.3.1, will develop and validate the correlation equations for the enhancement of water vapour in nitrogen, argon and hydrogen in the temperature range between -90 °C and -30 °C and pressure range from 0.1 MPa to above 1 MPa.	VTT, UNICAS
A2.3.3 M30	Based on the report regarding the improved measurements for water vapour enhancement factors from A2.2.5, UNICAS and VTT will implement and validate numerical tool(s), such as LabView, Matlab script, Java, Visual basic script or the like, to estimate the enhancement factor and its uncertainty in nitrogen, argon and hydrogen in the temperature range between -90 °C and -30 °C at selected pressures from 0.1 MPa to above 1 MPa. The validated numerical tool(s) will be software-implemented and be made freely available to the users in the form of a web-based application.	UNICAS, VTT



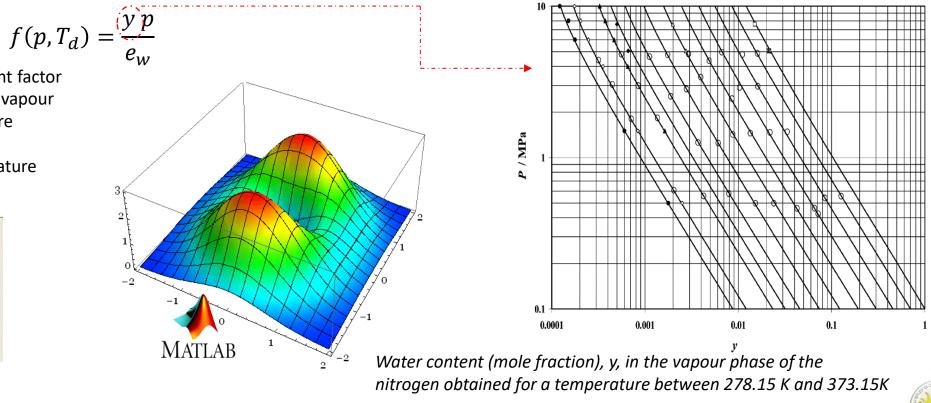
Activity number	Activity description	Partners
A2.3.4 M30	UNICAS and VTT will write a report using the data from A2.2.5 and A2.3.3. Once the report has been agreed by the consortium, the coordinator on behalf of UNICAS, and VTT, will then submit it to EURAMET as D4: <i>'User guide related with the software tool(s) of a web-based application to estimate the enhancement factor and uncertainty in water vapour in N2, Ar and H2 in the temperature range between -30 °C and -90 °C and pressure range from 0.1 MPa to above 1 MPa.'</i>	UNICAS, VTT
A2.3.5 M32	VTT will write a report using the report from A2.2.5 and the developed equation in A2.3.2. VTT and UNICAS will review the report and will send it to the coordinator. Once the report has been agreed by the consortium, the coordinator on behalf of VTT and UNICAS, will submit it to EURAMET as D5: 'Report on the development and validation of correlation equations for the enhancement of water vapour in N2, Ar and H2 in the temperature range from -30 °C to -90 °C and at pressures from 0.1 MPa to above 1 MPa.'	VTT, UNICAS

UNICAS contribution to WP2-Task 2.3

A2.3.1 (M23): Revision and comparison of existing non-ideal humid gas mixtures models.


Enhancement Factor for Water Vapor – Pressure Correction in Humid Methane - H.A. Sairanen, M.O. Heinonen

UNIVERSITÀ DEGLI STUDI DI CASSINO E DEL LAZIO MERIDIONALE



UNICAS contribution to WP2-Task 2.3

□ A2.3.3 (M30): Implementation and validation of numerical simulation of the correlation equations

		Active Paint		Stored Points
	Point Label	1		-
	F Pessure	0.00	MPa 💌] [0
	Terpicalan	273 15	deg K 💌] [0
	F Reality	0.000		U
	🗐 Enthelpy	0.00	kJ/kg •	0
	Entropy	0.00000	kJ/kg/K 💌	0
	Volume	0.0000	m3Acg 💌] [0
	Specific Heat	0.0000	kJ/kg/C •]]0
	Viscosity	0.00000	Poisec .] [0
Contraction of the	Conductivity	0.0000	Wett/n/C -] [0
	FanctiNo	0.00	- /////////////////////////////////////	D
COMPAREMENTS	CriticalVelocity	0.00	m/sec ·] [0
	Emple	Store	Repail Rec	ate Delete

web-based application

UNIVERSITÀ DEGLI STUD DI CASSINO E DEL LAZIO MERIDIONALE

Milestones and reporting

Month	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Activities	Jun-21	Jul-21	Aug-21	Sep-21	Oct-21	Nov-21	Dec-21	Jan-22	Feb-22	Mar-22	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23	Sep-23	Oct-23	Nov-23	Dec-23	Jan-24	Feb-24	Mar-24	Apr-24	May-24
	WP:																																			
	Task	<2.1																				_											_	_		
A2.1.1																			_	_														_		
A2.1.2																																				
A2.1.3																																		_		
A2.1.4																									_		_							_		
A2.1.5																									_									_		
A2.1.6 A2.1.7									-						_				_											D3				_		
M2.1.1	Task	<2.2											_		_															03			_	-		
A2.2.1	Tasr												_																_	-	_	_	_	-	_	
A2.2.2		-	_	_																						_			_		_	_	_	_		
A2.2.3																																	_	_		
A2.2.4		-																																_		
A2.2.5																																				
																	Task	2.3																		
A2.3.1																																				
A2.3.2																																				
A2.3.3																																				
A2.3.4																														D4						
A2.3.5																																D5				

Reporting period

- A2.1.2 CMI, INTA and UL will upgrade their saturationbased generators to produce humid gas mixtures in N₂ and Ar to extend the limit of reference frost-point temperatures to -90 °C and pressures up to 1 MPa.
 CMI, INTA, UL - Report due Nov. 2022
- A2.1.5 CETIAT will upgrade its mixed flow generator in pressure, from 0.1 MPa up to 1 MPa, and in frost point temperature down to -90 °C (possibly -95 °C).
 CETIAT Report due Nov. 2022
- A2.2.3 CEM, will produce cylinders containing pressurised humid gas reference mixtures in matrices of N₂, Ar and H₂ with amount fractions of water vapour to 1 µmol mol⁻¹. UVa will further develop and upgrade its microwave-based frost point hygrometer.
 CEM, UVa - Report due Nov. 2022

Month	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Activities	Jun-21	Jul-21	Aug-21	Sep-21	Oct-21	Nov-21	Dec-21	Jan-22	Feb-22	Mar-22	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23
	WP2																					
	Task 2.1																					
A2.1.1																					_	
A2.1.2																						
A2.1.3																						
A2.1.4																						
A2.1.5																			_	_	_	
A2.1.6									_													
A2.1.7	Tl																					
A2.2.1	Task 2.2												_					_				
A2.2.1	_		_															—	_			
A2.2.3	_		_															—				
A2.2.4									_									—				
A2.2.5																						
	_	_															Task	2.3			-	
A2.3.1																						
A2.3.2																						
A2.3.3																						
A2.3.4																						
A2.3.5																						

1st milestone Feb. 2022 (M9)

Thank you for your attention

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States