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MET Overview of our joint effort

0.H20

1.
2.
3.

UNICAS performed an extensive literature review

VTT and INRIM employed numerical calculation models to generate large datasets and formulate
functional equations.

CNAM and CETIAT Upgraded CNAM's microwave-based trace water analyzer to measure water vapor
enhancement in nitrogen and argon across selected frost-point temperature and pressure ranges.
(dilution system + mwR)

CMI Utilized an upgraded saturation-based generator to conduct independent measurements of water
vapor enhancement in nitrogen and argon, evaluating the non-ideality of these gas mixtures.
(1P1T+CRDS)

VSL and UL Confirmed the measurements of water vapor enhancement down to -80 °C in nitrogen and
argon at various pressures using their existing standards. (2P =2 f*)

Uva, INTA, CEM Performed measurements to assess the enhancement of water vapor in nitrogen, argon,
and hydrogen using improved equipment, contributing to a better understanding of gas mixture non-
ideality. (QSR+CMH)

VTT validated and finetuned the water vapor enhancement factor functional equation coefficients based
on the experimental data and uncertainty-aware data fusion techniques in a metrologically sound
manner.

UNICAS launched the PROMETH20 WebApp to facilitate the end-user access to the functional equations
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The Big Picture

MET
» ® H-oO

v

New experimental data for:
Nitrogen: f.f*
Argon: f.f*
Hydrogen:f

4

Validation of the calculations

Finetuning the numerical coefficients

Uncertainty estimation of the equtions

d

Documentation and WebApp

Big picture:

-Helmholtz-based equations
-Ab-initio calculations
-Experimental data

-Integration over the force field:

Lennard-Jones

WVEF
for non-polar

WVEF for a
particular Carrier
gas
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f Calculations: Method II

MET
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Figure 4: The water vapor enhancement factor for equilibrium over a planar pool of
liquid water based on the second method
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f= e(l—x}Fl(x]PFP(x]’ Eq.16
Fi(x) =C[(x*"=1)+ C, - (x7 %1 = 1)] 4+ 0.0158, Eq.17

~0.1963-x%  Eql8
c3+ (X% +cy)

Fp(x) = Fp g+ altanh(b-In(x) +¢) + 1| = Fp 4 +

The Universal values are best estimated to be F,q4=0.888. C;=0.8429. C,= 0.0663.

Frice=( 1.091 + 0.01431-In(x)) - Fl.water, Eq.19

Fp,jce:FP,water+O. 0 1 75 . Eq.20
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Figure 16: The pressure factor. Fp. for various carrier gasses. bars are indicative of the pressure
dependence; uncertainty levels are way bigger. Bars are moved horizontally for the sake of visualization.
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MET Experimental Setup: UVa and INTA

0.H20

iversidad deValladolid TermoCal

Pressure Control upstream: micrometric needle valves, the pressure regulator at the bottle.

Manometer

Humidity
generator P J [ ]| Ch'lngso'
— I>< Ii ieda mirror
Tir::ter;alllt:rre I (INTA traceability)

Thermometer Mass flow
(temperature

controller
Vessel homogeneity)

Quasi-spherical
cavity within a
pressure vessel

Purposely built
thermostatic

bath of 80 L Atmosphere

v

Thermostatic Bath

Dry N,
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MET Experimental Setup: UVa and INTA

D ® H-oO
Network
analyzer

Entry to the DP30 (upper conduit)
Exit of the DP30 to flow controller

(lower conduit)
Flow controller

Gas entry: direct from the bottle or
from the humidity generator.

Temperature
controller

Quasi-
spherical

Exit from the QSR to the DP30
resonator

I

The measurement setup consists of the quasi-spherical cavity within a pressure vessel immersed in a purposely built thermostatic bath of 80 L.
Inside the bath. there are three temperature probes. one used to control and maintain the temperature at the desired setpoint. and the other two
to check for homogeneity. A calibrated manometer is located at the exit of the resonator. The humid gas mixture flows downstream to a DP30
hygrometer lent by INTA with traceability provided by them. At the exit of the DP30 hygrometer. we use a flow controller to obtain the desired flow.
Several valves. along with the pressure regulator at the bottle are used to control the pressure before entering the resonator.

PROMETH20 Final Workshop

11




® PRO

. MET Experimental Setup: CNAM and CETIAT
> HoO

CETIAT upgraded the Mixed Flow Humidity
Generator (MFHG) for this project enhancing
its capability to handle:

* Pressure: 1 barto 10 bar
e Carrier gases: Air, Nitrogen, and Argon
* Frost-point temperature: -80 °C to -30 °C
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MET Experimental Setup: CNAM and CETIAT

0.H20

-two quasi-spherical copper resonators of 2.5 cm of ray. covered with a
layer of gold

-the resonant frequency of the resonator depends on temperature.
pressure. and composition of the gas inside. If pressure and
temperature are known and stabilised. the resonance frequency
depends only on the composition of the gas.

-by measuring the resonant frequency of the same gas with and
without humidity. the difference should attenuate the effects of the
environment.

-the inlet humid gas is divided in 2: half steam passes through a liquid
N, cooled cold trap at 140 K that removes all the molecules of water.
The dry gas enters resonator 1. The humid gas passes through
resonator 2. and then the two steams are recombined.

-at the outlet. the pressure is measured and stabilised.

Ar

e

L

\

Capillary

humidity generator/

air temperature
controlled +0.02 K

v

chilled mirror

hygrometer

Capillary

140K |
cold trap

-the temperature of the spheres is measured using four pt100 temperature sensors in series on each sphere. Resonance frequencies and

measured with lock-in amplifiers. The sealed can is connected to the outlet pressure.

PROMETH20 Final Workshop
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Primary humidity generator. 1P1T type. saturation-based principle: s o ] i i e - T
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* Temperature
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Experimental Setup: UL

HoO

OuUT1
f (tsat-Psat) es(temh) Psat MFC & VS ouT2
= - - o seer SO D
f(tcmh'pcmh) es(tsat) Pcmh FILTER V6
V3 V4
l SR V7X
e Pressure
Ny -y L
b 'S | SATURATOR|
saturator ? CMH @ exhaust to
Py —|><|— ambient
S MFC Psat Lsat exp. Pemh: Lemh back-pressure
. valve 1 reg. valve 2
N,. Ar

f*¥=1.0435 vs.

Preliminary results @ -30 °C. 10 bar:

1.0451 (N2 ab-initio)
1.045 (N2 PROMETH20)
1.0396 (Greenspan)

UNIVERSITY | Faculty of
OF LJUBL]JANA | Electrical Engineering
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Experimental Setup: VSL
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EAFEQF Uncertainty budget for f * measured at VSL

0.H20
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N2: Results

N2
C1 0.01396
u(c1) 2.5E-04
C2 0.2105
u(c2) 0.026

0,02

Cvi

f = E(I—X(EIE;S)JFP(-’C)

~

-—,

Fi(x) = GG = 1) + G, - (27 = 1)] + 00158, \ zz
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log(x)
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Ar: Results
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Towards a Master Equation: WVEF for Non-Polar Gases

0,015 o
1 s 0,0145 T o -
-
Air 0.013873 0.155554 Experimental O 0,014 $. = - 8%‘
Ab-initio 0.0135 e
Air 0.013978 0.185792 calculations ’
Nitrogen 0.013665 0.195243 LJ potential 0,013
Ab-initio 2,70 2,90 3,10 3,30 3,50 3,70 3,90
Nitrogen 0.013826 0.207725 calculations 03
Nitrogen 0.013961 0.210513 PROMETH20 0,25 O
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Ab-initio 0,2 o - T
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Argon 0.014153 0.1111 PROMETH20 0,1 - - $
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MET Web-app available at www.prometh2o.unicas.it

0.H20

Gas selection:
e CO2-free air

* Nitrogen
Input data
* Argon
—~ | Input data section
Input temperature, T Temperature .
(range: -100+0 °C) Standard uncertainty—»CXINNNEGNGEGE
T . tandard Model selection for the calculation of
emperature standar .
P ) Pressure the saturation pressure of pure water
uncertalnty) ur Standard uncertdinty over ice’ e;:
_—— ¢ Wexler (ITS90)
Saturation pressue ° Sonntag (1994)
of pure watepdver ice
Input pressure, P model sele@iion * |APWS (2011)
range 1+10 bar
(range ) resulte *  Huang (2018)
Pressure standard Pure water saturation pressure overice 3.9377
uncertainty' Uup Standard uncertainty 0.1235
—— | Results section
Enhancement factor 1.0067
Standard uncertainty 0.0067

Fausto Arpino, f.arpino@unicas.it


http://www.prometh2o.unicas.it/
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SCAN ME

Conclusions:

A functional equation has been derived based on the large datasets from the
numerical calculations of the equilibrium over a planar pool of liquid/solid water.

Several measurement setups have been made to perform water vapor enhancement
factor measurements for argon, nitrogen, and hydrogen; all of them provide well-
documented traceability to the Sl system of units.

While some partners are actively carrying out the experiments, three of them have
already delivered excellent results that are in great agreement with each other and
with the numerical calculations.

The relative standard uncertainty, considering the current datasets for the gas-specific
equations, is as low as 0.02% to 0.14% at atmospheric pressure elevated to 0.89% at 1
MPa and 1 ppm . This is significantly lower than that of Greenspan's, which is 1% in its
entire range.

Our WebApp is already available at www.prometh2o.unicas.it
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