

20IND06 PROMETH2O - Final Workshop Next-generation trace water sensors and analyzers for the industry

Livio Gianfrani

Dipartimento di Matematica e Fisica, Università degli Studi della Campania Luigi Vanvitelli **Tuesday 30th of January 2024**

C1 WP1: Improved trace water measurement methods and techniques

The aim of this work package is to improve trace water measurement methods and techniques in the water fraction between 5 ppm and 5 ppb (equivalently to between -65 °C and -105 °C frost point temperature). The target relative uncertainty for the measurements is between 3 % and 8 % for water concentrations of 5 ppm and 5 ppb, respectively. Sensor performance for different gas species, at various pressures and over time remains a challenge for many applications. Optically based methods can have fast response and can be used with well-defined gas matrices but are prone to interferences from other gases if they suddenly appear in a process. Therefore, it is vital that sensors can handle possible interferences while keeping their high selectivity for target species.

- CC-FS-CRDS in the NIR
- Far-UV absorption spectroscopy
- Conventional FTIR-based spectroscopy
- Cavity-enhanced frequency-modulated spectroscopy

The aim of WP1

C1 WP1: Improved trace water measurement methods and techniques

The aim of this work package is to improve trace water measurement methods and techniques in the water fraction between 5 ppm and 5 ppb (equivalently to between -65 °C and -105 °C frost point temperature). The target relative uncertainty for the measurements is between 3 % and 8 % for water concentrations of 5 ppm and 5 ppb, respectively. Sensor performance for different gas species, at various pressures and over time remains a challenge for many applications. Optically based methods can have fast response and can be used with well-defined gas matrices but are prone to interferences from other gases if they suddenly appear in a process. Therefore, it is vital that sensors can handle possible interferences while keeping their high selectivity for target species.

- CC-FS-CRDS in the NIR
- Far-UV absorption spectroscopy
- Conventional FTIR-based spectroscopy
- Cavity-enhanced frequency-modulated spectroscopy

- Principle of operation
- / Description
- Test and performance

Properties:

- ✓ Resonances occur at multiples of c/2L = FSR
- ✓ These resonances have kHz-level width and therefore act as optical frequency filters
- ✓ The optical pathlength is enhanced by a factor $2F/\pi$
- ✓ The optical power is enhanced as well

act as optical frequency filters \checkmark The optical pathlength is enhanced by a factor 2F/ π

Università degli Studi

della Campania Luigi Vanvitelli

 \checkmark The optical power is enhanced as well

Hor

Properties:

 $C T_0 T$

The CRDS principle

Main advantages:

- Intrinsic insensitivity to laser intensity fluctuations
- Absolute nature of the absorption measurement
- Traceability to SI standards (time and frequency)

λ = 1.3947 μ m

H₂O

Università degli Studi

della Campania Luigi Vanvitelli

Wavenumber: 7170.27781 cm⁻¹

H₂O line: $3_{2,2} \rightarrow 2_{2,1}$ $v_1 + v_3$ band

Cavity details:

Plano-concave mirrors; R=99.9994%; Finesse \simeq 500000

Cavity-spacer in 316Ltype stainless steel with an electro-polished inner surface;

L≃50 cm.

The CC-FS-CRDS spectrometer

Università degli Studi della Campania *Luigi Vanvitelli*

A few pictures from the Lab

Università

cm⁻¹, Phys. Rev. A**79**, 052507 (2009)

PROMETH2O Final Workshop

11

Choice of the lineshape profile based upon:

- root mean square (rms) of the residuals;
- the Akaike Information Criterion (q_{AIC}) ;
- quality of fit parameter.

$$q_{AIC} = N_p \left[\ln \sigma_{fit}^2 + \ln 2\pi + 1 \right] + 2\left(\frac{P_{fit}}{P_{fit}} + 1 \right)$$

Table 1														
$P_{fit}, q_{AIC},$	QF,	and	the	rms	values	for	the	all	the	investigated	line	shape	function	s.

$g(v - v_0)$	rms (cm ⁻¹)	QF	P_{fit}	<i>q</i> _{AIC}
VP	1.69×10^{-9}	141	5	-2241.5
MVP	3.33×10^{-10}	715	6	-2434.5
SDVP	2.84×10^{-10}	838	6	-2453.6
SDNGP	2.80×10^{-10}	850	7	-2453.3
SDAVP	2.75×10^{-10}	866	8	-2453.4

Università degli Studi

della Campania Luigi Vanvitelli

MET H₂O

Uncertainty budget

Contribution (k=1)	Type A (%)	Type B (%)
Statistical	0.3	
Linestrength value		0.3
Frequency axis		Negligible
Laser scan width		0.1
Spectral resolution (frequency step)		0.2
Temperature		0.07
Pressure		0.05
Lineshape model		0.1
Partition function		0.04
Overall uncertainty		0.5 %

Comparison with a commercially-available CRDS instrument

- Continuous sub-ppm measurements of water mole fraction in ultra-high purity gases are possible with a relative uncertainty better than 1 %
- ✓ Spectroscopic measurements are characterized by an absolute, highly accurate and stable frequency axis
- ✓ The retrieval procedure is not sensitive to the gas mixture
- ✓ Our system acts as reference method to calibrate portable sensors and analyzers
- ✓ The system can be made much more compact and portable

The AMP Group

Thank you for your attention

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Performance	
Operating range	See table below
Detection limit (LDL, 3o/24h)	See table below
Precision (1ơ, greater of)	± 1% or 1/3 of LDL
Accuracy (greater of)	± 4% or LDL
Speed of response	< 3 minutes to 95%
Environmental conditions	10°C to 40°C
	30% to 80% RH (non-condensing)
Storage temperature	–10°C to 50°C

100 90 80 70 τ (µsec) 60 50 λ, τ_{zero} 40 XXX 30 20 10 λ, τ_{peak} 0 1391.3 1391.8 1392.3 1392.8

HALO RP H₂O – Trace Moisture Analyzer (Standard Model)

Performance, H ₂ O:	Range	LDL (3σ)	Precision (1σ) @ zero
In Nitrogen	0 – 20 ppm	1.5 ppb	0.5 ppb
In Argon	0 – 20 ppm	1.5 ppb	0.5 ppb
In Hydrogen‡	0 – 20 ppm	1.5 ppb	0.5 ppb
In Helium	0 – 12 ppm	1.0 ppb	0.3 ppb
In Clean Dry Air (CDA)	0 – 20 ppm	1.5 ppb	0.5 ppb
In HCl ^{+,‡}	0 – 25 ppm	3 ppb	1.0 ppb
in CO [‡]	0 – 20 ppm	2 ppb	0.7 ppb
In Phosphine [‡]	0 – 10 ppm	9 ppb	3 ррb
In Germane [‡]	0 – 18 ppm	20 ppb	7 ррb

Wavelength (nm)

Sources of type-B uncertainty

