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Introduction

m Thermophysical properties of mixtures of water vapor with simple gases such as nitrogen, oxygen,
argon, carbon dioxide, and hydrogen important for atmospheric modeling and humidity standards

m Measurements of thermophysical properties of gases, particularly if water vapor is involved,
difficult and often severely limited in terms of temperature range and accuracy

m Alternative to experiments: first-principles-based approaches

Quantum-chemical
ab initio methods
Ay =EV¥

} V(r,,r,,...)

Statistical thermodynamics: Kinetic theory of gases:
virial coefficients transport properties
By(T), B3(T), By(T),. n(T), A(T), D(T),...
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Introduction

m Mixtures involving H,O for which virial coefficients were investigated by us using first-principles
approaches:
] HQO—COQ 1
H,0-N, 2
H20—02, H2O—air 3
H,0-CO *
H,0-H,S, H,0-S0, °
H,0-H, ©
HzO—AI‘ 7
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Introduction

Modeling of HoO-N>, HyO-H,, HyO-Ar, and HyO—Ar—Ar interactions

Interaction potential energy surfaces Cross second and third virial coefficients
oY Yo) 0

m H,O-Nj5, HoO-Hj, and HyO-Ar two-body potential energy surfaces and an HyO—-Ar-Ar
nonadditive three-body potential energy surface developed based on quantum-chemical ab
initio calculations:

Supermolecular approach: Schrddinger equation solved for the molecule pair (the
supermolecule) in various geometric arrangements and the two individual molecules to obtain
the respective total electronic energies

Interaction energy obtained as difference between energy of the supermolecule and energies
of the individual molecules for a given geometric arrangement

Applied level of theory: frozen-core CCSD(T) or CCSDT(Q) with counterpoise correction
and extrapolation to the complete basis set limit; in some cases also relativistic corrections
Site—site Ansatz with nine sites for H,O, five sites for N, and H», and one site for Ar used to
represent the two-body potential energy surfaces analytically

Extended Axilrod—Teller—Muto Ansatz with a single H,O site and an analytical induction
term used to represent H,O—Ar—Ar nonadditive three-body potential energy surface
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H,O—-Ar two-body potential energy for selected angular arrangements
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Symbols: ab initio calculated interaction energies Solid lines: fitted analytical function 8/22
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Virial equation of state

m Virial equation of state is a theoretically derived extension of the ideal gas law:

p

=1+B(T)pm T)p2 +...
kT~ T BT P+ C(T) o+

with pressure p, molar density p,,, molar gas constant R, temperature T, second virial
coefficient B(T), third virial coefficient C(T), ...

m Statistical physics provides exact link between virial coefficients and potential energy
surfaces for intermolecular interactions between the gas molecules:

m Second virial coefficient B(T): interactions between two molecules
m Third virial coefficient C(T): interactions between up to three molecules

m Alternative notation for the virial coefficients: B»(T) =B(T), B3(T)=C(T), ...
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Calculation of second and third cross virial coefficients

m Second virial coefficient of a binary gas mixture:
B =x1B11 +2x1x2B1> + 3B
m Third virial coefficient of a binary gas mixture:
C =x1C111 +3x10C112 + 3x15C 20 + X3Ca0

m Classical cross second virial coefficient for rigid molecules:

Np [ V(R,Q,Q
Bh=-"2 <exp [—( ekl 2)] —1> dR
2 0 kBT Q1,0

Integrals for Bia (HoO-N2, HoO-Hj, and HoO—-Ar) and Cipp (only HoO—-Ar) evaluated by
means of the Mayer-sampling Monte Carlo method?® for temperatures up to 2000 K
Quantum effects included semiclassically by using the quadratic Feynman—Hibbs (QFH)
modification of the two-body potential energy surface

1J. K. Singh, D. A. Kofke, Phys. Rev. Lett. 92, 220601 (2004) ,
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Correlations of the calculated Byp and Cipy values

m HyO-Nbs:
e e, 0 e
m HyO-Hy:
g G102
® H20-Ar: B 81.432 25454 66.384  2.8391
0111371/;101 = 14482+ (T;)I/Z - T;F - (7;*)3 - (T.*)n/z
- rny o4 i sy o

For all correlations T* = T/(100 K)

Derived property accessible from the Bjs correlations: dilute-gas cross isothermal
Joule—Thomson coefficient ¢;» = Bjs — T‘?—T‘z
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Bis for HoO—Nj: comparison with exp. data and other calculated values
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@12 for HoO-Ny: comparison with exp. data and other calculated values
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Bis for HoO—Hy: comparison with exp. data and other calculated values
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@12 for HoO—Hy: comparison with exp. data and other calculated values
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Biy for HyO—Ar: comparison with exp. data and other calculated values
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@12 for HoO—-Ar: comparison with exp. data and other calculated values
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Ci9o for HyO-Ar: results for different levels of theory
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Conclusions

m Accurate values of the cross second virial coefficients Bi» of HoO-N», H,O-H>, and
H>O—Ar mixtures and the cross third virial coefficient Cio of HoO—Ar mixtures obtained
at temperatures up to 2000 K from first-principles calculations

m Calculated values significantly more accurate than the few available experimental data
m Ciop for HoO—Ar mixtures previously completely unknown
m Practical correlations fitted to the calculated Biy and Cipo values

m Correlations suitable for calculation of fugacities and enhancement factors using standard
expressions from thermodynamics of multi-component systems
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Thank you very much for your attention!
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