

20IND06 PROMETH20 Metrology for trace water in ultra-pure process gases

Calibration and Measurement: Ensuring Traceability in Industry

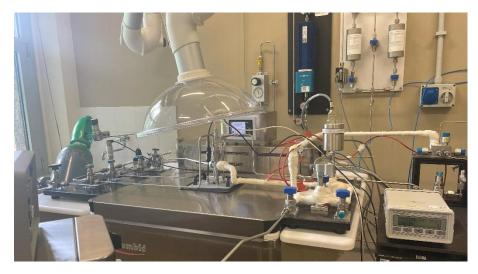
Ned Hawes - Qrometric UK


Gas Analysis 2024 Symposium / Porte de Versailles, Paris - France

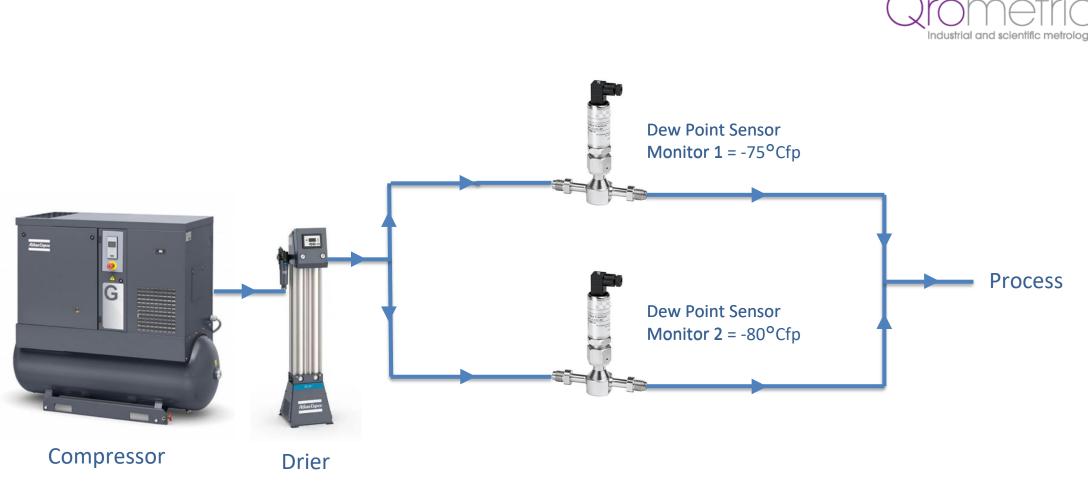
Tuesday 30th of January 2024

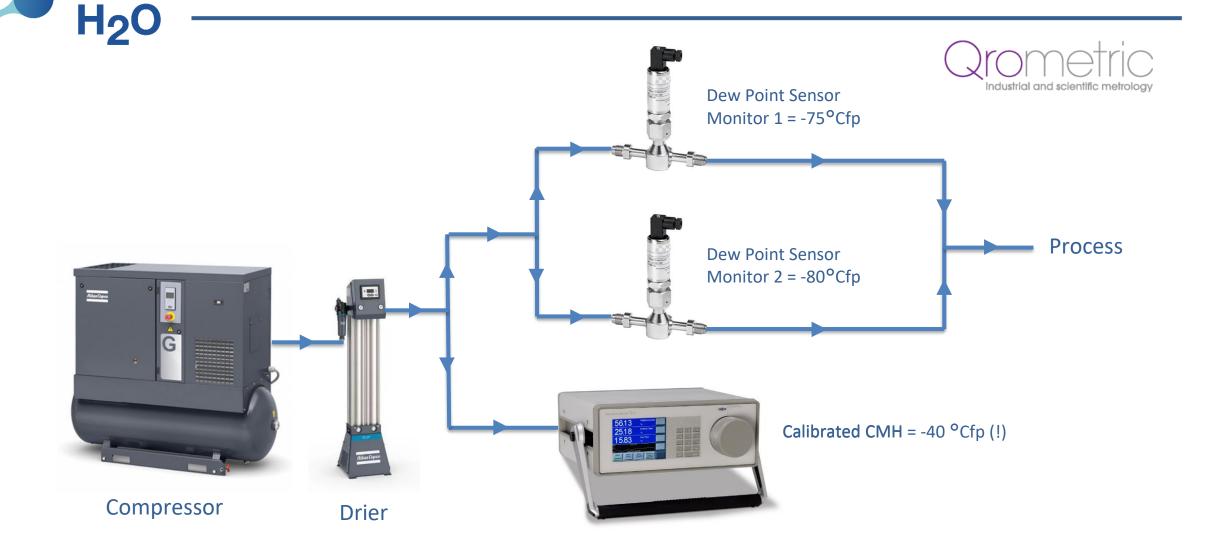
Measurement Traceability

- Uncertainty accumulates at each step typically due to long-term drift and irreproducibility of instruments/measurements
- This is why we need top-level standards with small uncertainty



Highest level of trace water-vapour measurements





Example 1 – measurement dew point of compressed air

Example 1 – Dew point measurements in compressed air

ProMetH₂O – a long time coming!

An evaluation of performance of trace moisture measurement methods S.A. Bell, T. Gardiner, R.M. Gee, M. Stevens, K. Waterfield, A. Woolley, Proceedings of TEMPMEKO 2004, Cavtat-Dubrovnik, Croatia, June 2004, 663-668.

AN EVALUATION OF PERFORMANCE OF TRACE MOISTURE MEASUREMENT METHODS

S.A. Bell¹, T. Gardiner¹, R.M. Gee¹, M. Stevens¹, K. Waterfield², A. Woolley¹

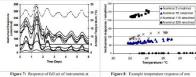
¹National Physical Laboratory, Teddington, United Kingdom ²BOC Edwards, Crawley, United Kingdom

ABSTRACT

A group of 13 trace moisture instruments have been tested in a joint project by the UK National Physical Laboratory and BOC Edwards. The instruments were based to be project to collaborating instrument manufacturers and suppliers. The selection comprised several industria/grade capacitive probes, plus other instruments of types for laboratory and progress use, including a cavity ring-down perconneter, a tuncable diode laner absorption spectrumeter, electrolytic (PAO) hygometers and two confensation hygometers. The tests included Interaction terms of dew-point temperature down in 60 ''Consimilarly 100 parts per billion, it expected after approximately 12 months to evaluate long-serm dirth. Additionally, the immunents were tased for tesponse to spared and downamic clauses. In social cases of the second se

1. INTRODUCTION

Measurements of trace moisture are needed in a variety of different industrial sectors, including semiconductor manufacture, pure gas supply, atmospheric and climate research, aerospace, petrochemical processing, power generation, air filter and purifier manufacture, and supply of reference standards for other trace gases.


Trace moisture measurement is an area of advancing technology, and applications now require measurements of lower trace amounts of valuer vapore than ever before. Some measurement methods are now operated near their limits of applicability. Problems occur because, depending on type, trace moisture instruments can be prone to failure, drift, slow response, hystersiss and large deviations of the readings from 'true values'. To help instrument users benefit from an ance fully informed choice of measuring instrumentation, a study of performance of race moisture measurement methods has been carried out by the UK National Physical Laboratory (NFL), and BOC Hawards (BOCE).

2. OVERVIEW OF STUDY

Instruments of the types listed in Table 1 were studied. All were commercially available (although the \$2 spectrometer tested was an early production model.) In what follows, particular products are not identified. However, the companies that collaborated by loaning instruments to the project (or by agreeing to the inclusion of instruments owned by the authors) are acknowledged at the end of this paper.

4. TEMPERATURE RESPONSE

For a period of several weeks, the instruments were subjected to conditions of fluctuating laboratory temperature. This revealed the temperature-dependence of the trace moisture reading, as all lastrator in Figure 7, which shows the variations in instrument responses to a nominally fixed applied condition of 115 molecules. The coefficients of temperature sensitivity were determined for each instrument at various water vapour revels. Figure 8 shows an illustration of the variation of temperature sensitivity with measuring range for Spectrometer S1. Table 2 summaries the temperature sensitivity with measuring range for Spectrometer S1. Table 2 summaries the temperature coefficients are the combination of the temperature responses of the instruments with any underlying temperature response of the source and connecting piperoxic.

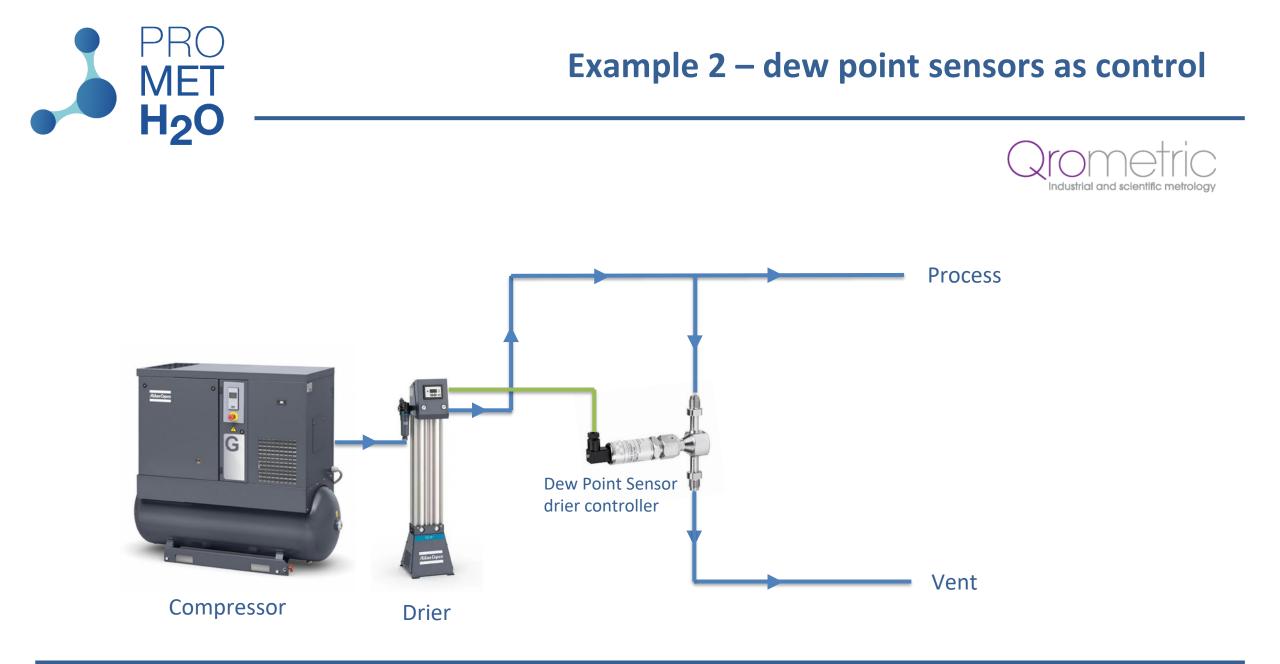
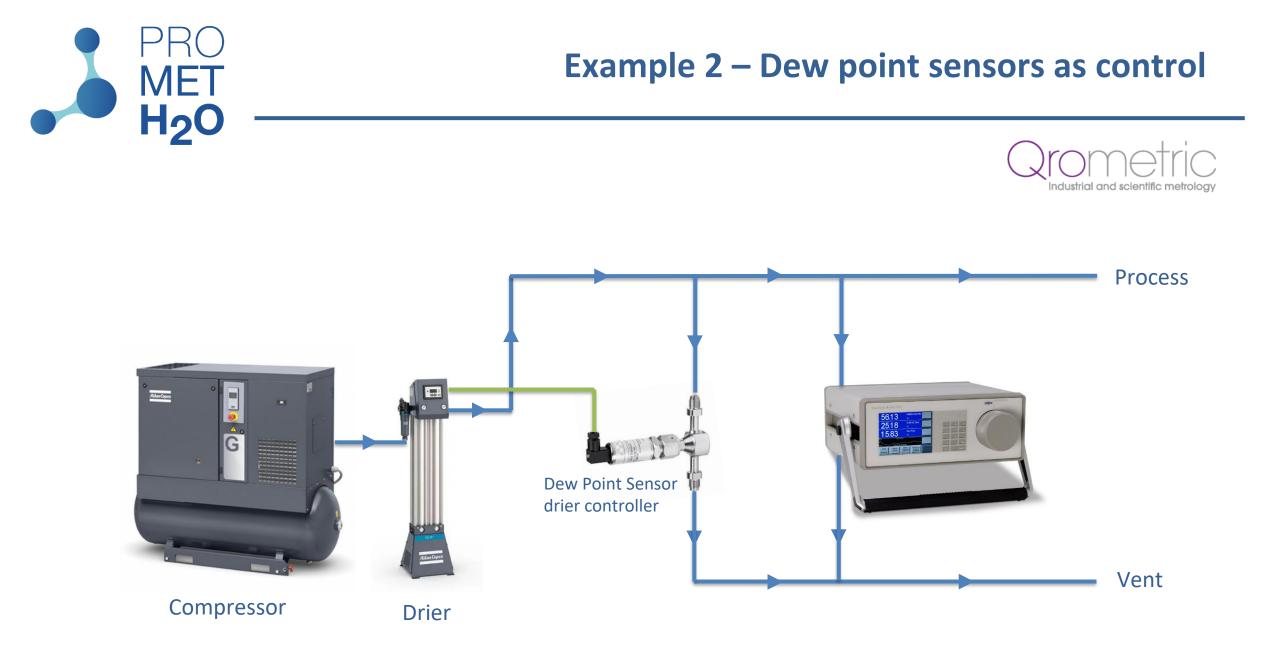


Table 2: Table showing the temperature sensitivities at different concentration

Nominal concentration (nmol/mol)	Temperature coefficient in (nmol/mol) / *C for instrument										
	51	52	CI	C2	EI	E2	P2	P3	P4	P5	P7
2	0.3	-53	1	0.9	5.7	0.8	12.5	10.8	3.5	3.8	1
70	5	-6	5.6	4.3	10.2	1.3	14.2	15.1	10.6	11.3	1
115	9.1	2.2	9.2	6.8	11.9	2.1	13.4	14.9	9.2	10.2	3.
225	15.2	-4.9	15.6	9.9	22.4	18.4	19	31.4	24.5	22.7	5.1

5. RESPONSE TO STEP CHANGES

In most high parity applications, fast detection of step changes in moisture is of interest, particularly for upward changes. Figures 9 and 10 show time response to steps from nominally. Sou mol/mol. 859 multi-net, and back to 300 multi-net. The interval between instrument readings was five multi-scene (Te C which had an antomatic 20 multi-net exerning). The step changes were ableved by rapid flow switching, and were much qualeer than the sampling fund. Some instruments showed the remained reduced significant variation in response depending on whether the sign change was positive or negative. For F7, only the 99% upward response and 10% downward response are shown (both conservative values), due to the output being set as a caraer resolution during this test.



Traceability vs Accreditation?

- No as found results
- Non-compliance to FDA requirement

Traceability vs Accreditation?

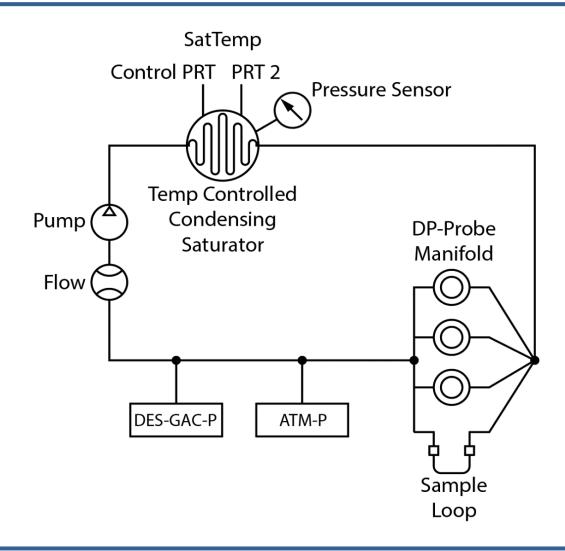
https://www.qrometric.com/case_studies/ monitoring-humidity-in-compressed-air-systems/

ppb-level Measurement Challenges

- Sensor performance and limitations
- Measurement drift, contamination by process
- Lack of timely calibration, 'As Found' results often omitted

Driven by audit-trail in pharmaceutical industry/FDA

In-Situ Dew Point Sensor Calibration

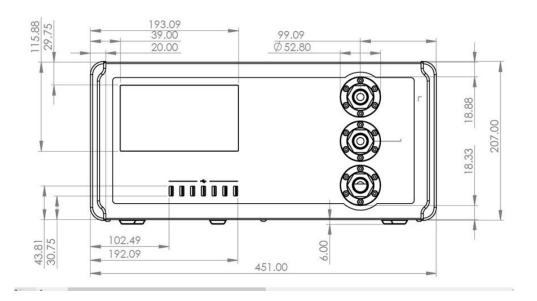

FPG: the world's first transportable dew-frost point calibrator

Qrometric FPG – Principle of Operation

Qrometric FPG – Compatible with Most Hygrometers

Three user configurable probe ports >>> Probe adapters to suit all DPS on the market >>>

<<< External sample loop with VCR fittings



Qrometric FPG - Capabilities

Qrometric Industrial and scientific metrology

- -100...+15°C frost/dew point (10ppbV to 17,000 ppmV)
- Uncertainty ±0.1...0.3°C

Qrometric FPG – Qualification and Traceability

 FPG validated with high performance MBW SLX Chilled Mirror Hygrometer as part of PROMETH₂O

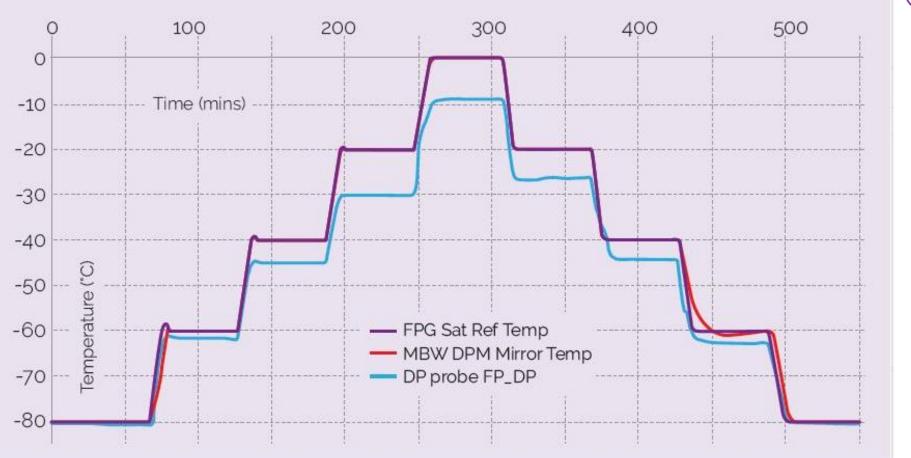
- Traceability of SLX to INRIM
- Validation demonstrates validity of traceability to temperature/pressure

Qrometric FPG– ProMetH₂O Qualification

#	Result		#	Result A	#	Result A	
1	-74.7918		1	-89.9556	1	-100.2066	
2	-74.8132		2	-89.9533	2	-100.2188	
3	-74.8196		3	-89.9238	3	-100.1889	
4	-74.8446		4	-89.9765	4	-100.2403	
		1					

	-75		-90		-100
MEAN	-74.84	MEAN	-89.95	MEAN	-100.21
STDEV	0.028	STDEV	0.022	STDEV	0.019
DOF	9	DOF	3	DOF	4
Repeatabil	0.0088	Repeatabil	0.0109	Repeatabil	0.0087

Qrometric FPG – Calibration Uncertainty Budgets


FPG Uncertainty at -60 °C Uncertainty Contributions	Туре	Value	Units	Sensitivity	Distribution	Divisor	Std. Un
Temperature Effects							
FPG SatT control PRT calibration uncertainty	в	0.040	°C	1.00	Normal 2s	2.00	0.020
FPG SatT control PRT drift	в	0.005	°C	1.00	Rectangular √3	173	0.003
FPG SatT control PRT stem conduction	В	0.005	°C	1.00	Rectangular √3	173	0.003
FPG SatT control PRT self-heating and residual heat fluxes	в	0.005	°C	1.00	Rectangular √3	1.73	0.00
FPG SatT control uncorrected deviations	В	0.005	°C	1.00	Rectangular √3	173	0.003
FPG Display Resolution	В	0.0005	°C	1.00	Rectangular √3	173	0.000
FPG SatT Repeatability	A	0.004	°C	1.00	Normal 1s	1.00	0.004
Temperature Effects combined uncertainty							0.0212
Saturator Contributions:							
Saturation efficiency	В	0.0001	°C	1.00	Rectangular √3	1.73	0.000
Saturator contamination	A	0.001	°C	1.00	Normal 1s	1.00	0.00:
Temperature gradient between saturator surface and PRT	A	0.01	°C	1.00	Normal 1s	1.00	0.010
Saturator Temperature homogeneity	A	0.01	.C	1.00	Normal 1s	1.00	0.010
Saturator Temperature stability	A	0.001	°C	1.00	Normal 1s	1.00	0.00:
Saturator Contributions combined uncertainty							0.0142
Pressure Effects							
FPG internal pressure sensor calibration uncertainty	В	70	Pa	0.00006	Normal 1s	1.00	0.004
FPG internal pressure sensor drift	В	300	Pa	0.00006	Rectangular √3	1.73	0.010
FPG pressure resolution	В	0.5	Pa	0.0001	Rectangular √3	1.73	0.000
FPG internal pressure sensor repeatability	A	300	Pa	0.00006	Rectangular √3	1.73	0.010
Stability	В	150	Pa	0.00006	Normal 1s	1.00	0.009
Pressure differences between Saturator and Manifold	A	460	Pa	0.00008	Normal 1s	1.00	0.035
Pressure Effects combined uncertainty							0.0394
Flow Effects							
Flow dependency related to Pressure differentials	А	390	Pa	0.00008	Normal 15	1.00	0.030
Flow Effects combined uncertainty							0.0299
Other Uncertainties							
Internal sorption/desorption/leaks effects	В	0.5	Pa	0.0001	Rectangular √3	1.73	0.0000
Flow Effects combined uncertainty							0.0000
FPG combined uncertainty							0.06
FPG expanded uncertainty					05%	confidence	0.11

Qrometric FPG – Typical Calibration Profile

Qrometric FPG – Temperature Measurement & Control

 PRT for saturator temperature measurement and control

- Second PRT can be used for independent validation of saturator temperature...
- Measurement traceability to temperature and pressure

Qrometric Accreditated Calibration Laboratory

- ISO17025 Accreditation granted 21.09.2023
- https://www.ukas.com/downloadschedule/27982/Calibration/
- QroLab powered by FPG

Further reading

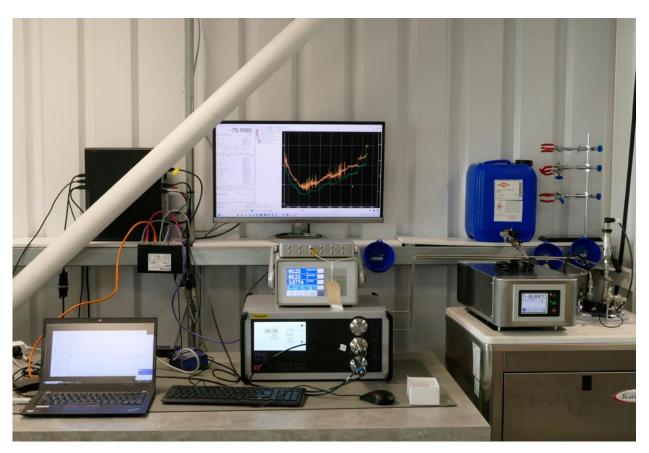
FPG: the world's first transportable dew-frost point calibrator

https://www.qrometric.com/dew-frost-point-calibration-made-easy/

CALIBRATC

Thank you for your interest, may I take your questions?

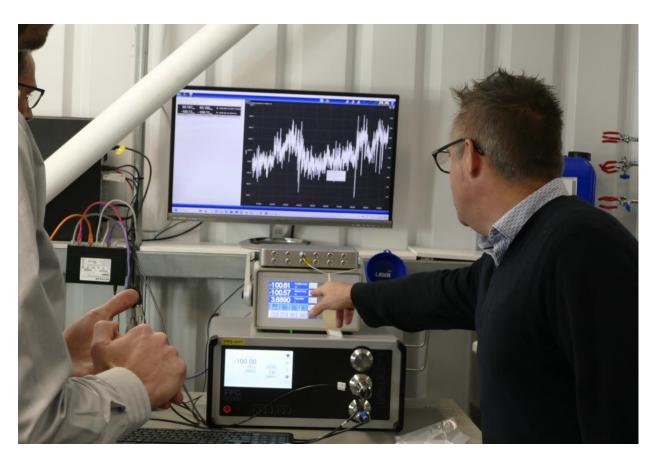
Ned Hawes: ned@qrometric.com



The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

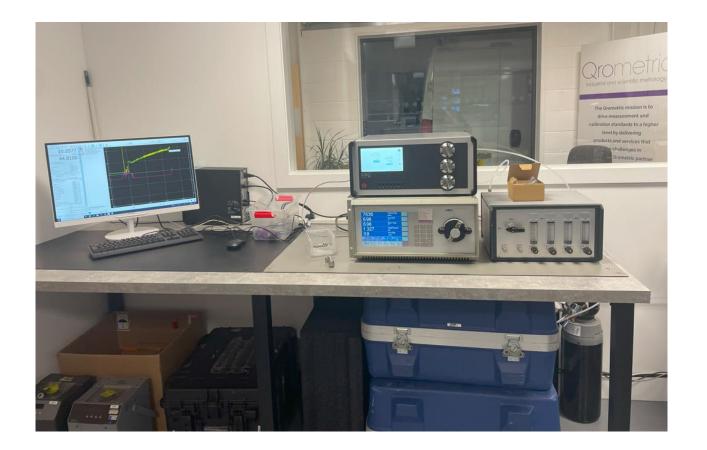
ProMetH₂O Test Bed 1

Vaisala Dew Point Sensors compared with FPG/MBW SLX



ProMetH₂O Test Bed 1

Vaisala Dew Point Sensors compared with FPG/MBW SLX



Dew point measurements in CO2

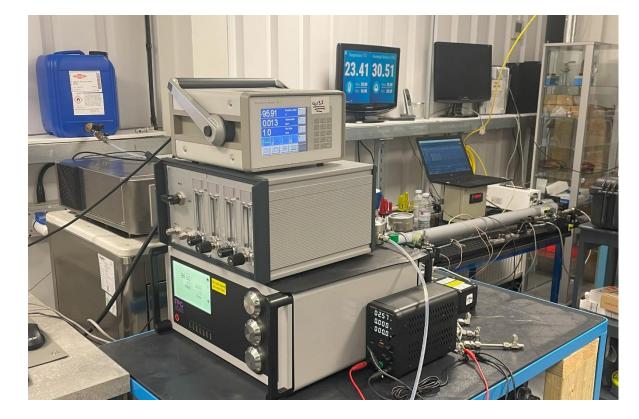
ProMetH₂O Test Bed 1

Discussion on FPG uncertainty budget

ProMetH₂O Test Bed 1

Prototype High Pressure FPG with pressurized pump

• Far UV Spectrometer testing with prototype high pressure FPG



Other ProMetH2O Achievements

 Prototype High Pressure FPG purged with Argon and compared with DTU Far UV Spectrometer. Condition: 13ppb

