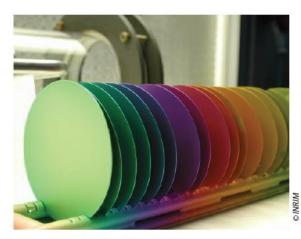


Measurement challenges for trace water in pure gases

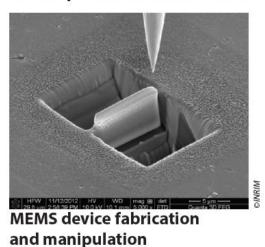
Stephanie Bell, National Physical Laboratory, UK

20IND06 PROMETH2O - Final Workshop Gas Analysis 2024 / Porte de Versailles, Paris - France Tuesday 30th of January 2024


I will say something about:

- The drivers applications, and use of multiple gases
- Humidity metrology
- Challenges
 - of the trace range
 - of multiple measurement principles
 - of multiple gases and gas non-ideality
- Conclusions

Needs for ultra-pure process gases

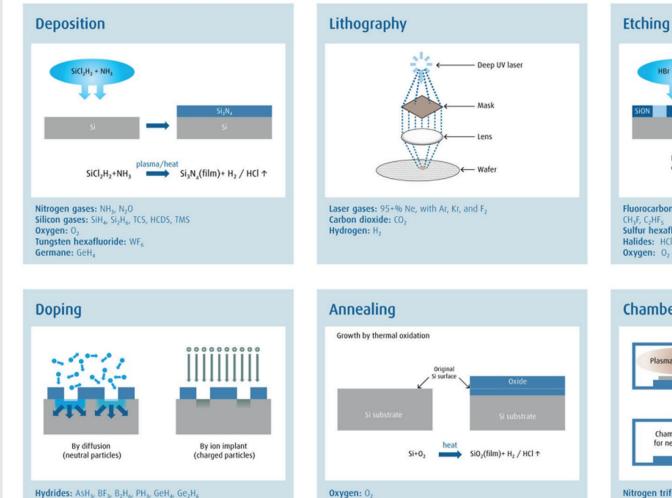

DISt

LPCVD process of silicon wafers

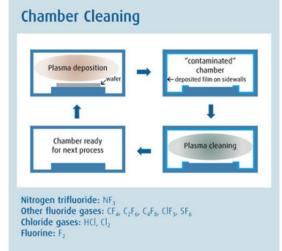
OLED products

Solar photovoltaic (PV) panels

https://www.lindegas.com/en/images/Gasworld%20-%20Creating%20a%20Semiconductor %20FEB18 tcm17-477345.pdf


gasworld • February 2018

gasworld.com/specialty-gas-zone


Creating a semiconductor and the gases that make it happen

By Dr. Paul Stockman, Head of Market Development, Linde Electronics

Processes and Gases Used

Hydrogen: H₂ Argon: Ar Etcning $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ &$

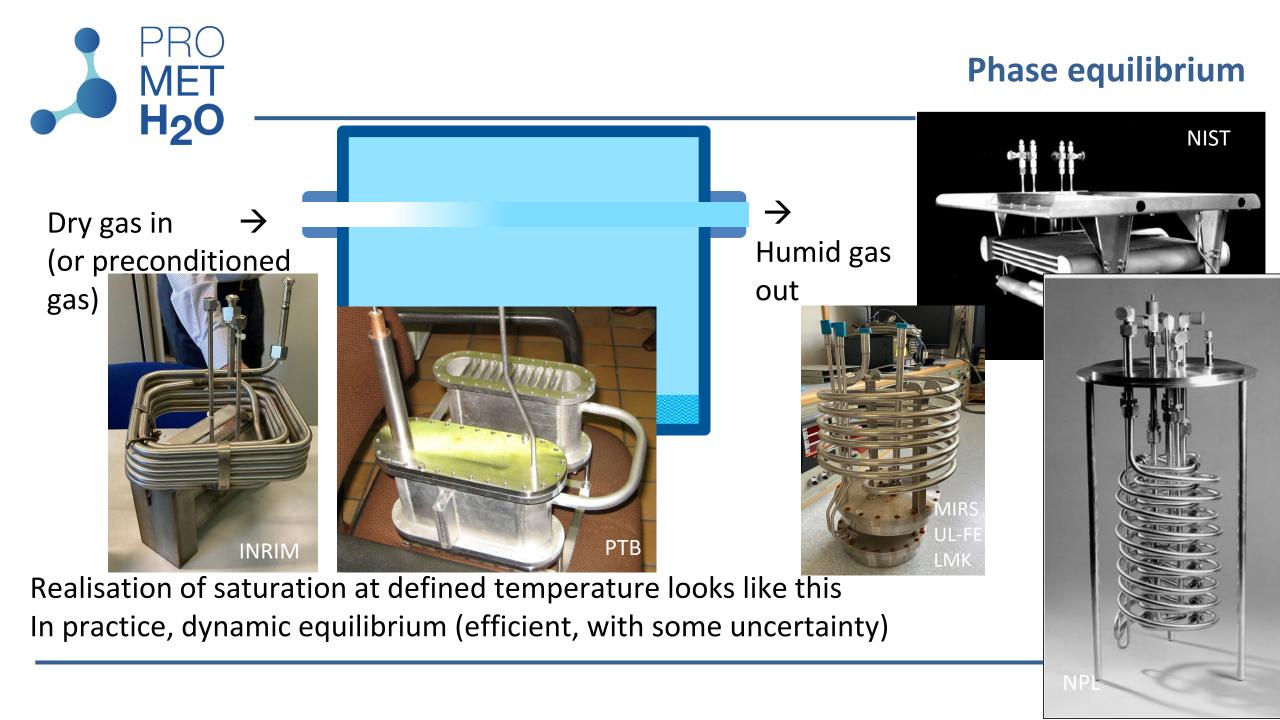
https://www.nist.gov/pml/ser science/fluid-metrology/datak thermophysical-properties-gas used-semiconductor-0

Measurement challer

Ammonia	NH ₃	Nitrous Oxide	N ₂ O	
Argon	Ar	Nitrogen Trifluoride	NF ₃	ases
Allene	C ₃ H ₄	Nitrogen	N ₂	
Arsenic Trifluoride	AsF ₃	Oxygen	0 ₂	
Arsine	AsH ₃	Phoesent	COCI2	
Trimethyl Arsine	As(CH ₃) ₃	Phosphourous Trifluoride	PF ₃	
Diborane	B ₂ H ₆	Phosphorous Pentafluoride	PFs	
Pentaborane	B ₅ H ₉	Phosphine	PH ₃	
Boron Trichloride	BCI3	Sulfur Dioxide	SO2	
Bromine	Br ₂	Stibine	SbH ₃	
Carbon Dioxide	CO2	Silane	SiH ₄	
Carbon Monoxide	со	Disilane	Si ₂ H ₆	
Carbon Tetrafluoride	CF4	Silicon Tetrachloride	SiCL ₄	
Chlorine	Cl ₂	Silicon Tetrafluoride	SiF ₄	
Chlorine Trifluoride	CIF3	Sulfur Hexafluoride	SF ₆	
Ethylene Oxide	C ₂ H ₄ O	Titanium Tetrachloride	TiCl ₄	
Helium	He	Tungsten Hexafluoride	WF ₆	
Hexeñvoroethane	C ₂ F ₆	Uranium Hexafluoride	UF ₆	
Hydrogen	H ₂	Vinyl Bromide	C ₂ H ₃ Br	
Underson and the	110-	Mard Floreda	CHE	

- Water vapour is not listed as a process gas, but it is always present.
- Water vapour is challenging because it is
 - ... everywhere ... reactive ... polar (sticky).
- **Reduction** of water vapour and its effects
 - Meeds control

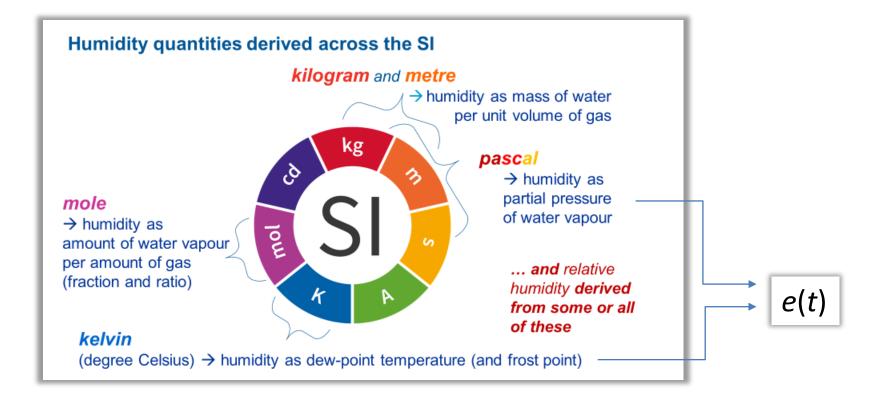
heeds measurement


Mathematical Structure

Seeds metrological traceability.

What we measure - humidity quantities in the SI

Humidity scales


Generally, SI units are subdivided or multiplied to make a scale.

For humidity quantities, generally, at defined T and P ...

- From saturation temperature
 - dew-point scale (dew point and frost point)
 - so-called "single-pressure generator"
- From saturation (at suitable over-pressure):
 - partial pressure is "subdivided" by expansion
 - "two-pressure generator"
- From saturation at any pressure:
 - concentration (however expressed) is "subdivided" by dilution with dry gas
 - "flow-mixing generator"
- And others, such as diffusion or permeation of water vapour (mass per unit time ...)

Saturated gas $z_{sat}(P,T)$

... and calculations to convert between quantities, often via vapour pressure of (pure) water, e(t)

Some main challenges:

- Challenge of the trace range
 - Need for dry process gas
 - Calibration reference dry gases trace ranges
 - Impact of stray water
- Challenges of the use of multiple gases
 - Challenge of multiple measurement principles in this range and their sensitivity to different issues (pressure, species, response time, drift)
 - Challenge of gas non-ideality water vapour enhancement factors

Challenge of the trace moisture range

- Need for dry process gas to avoid product defects
- Example range 5 μmol mol⁻¹ to 5 nmol mol⁻¹ 5 ppm to 5 ppb (frost point at atmospheric pressure, -65 °C to -105 °C)
- Requires drying of process gas, and monitoring of this
- Stray water comes from desorption, leaks, back-diffusion (and residual trace water in gas as supplied)
- May be addressed by process flushing, baking, vacuum ...
- Conditioning takes time

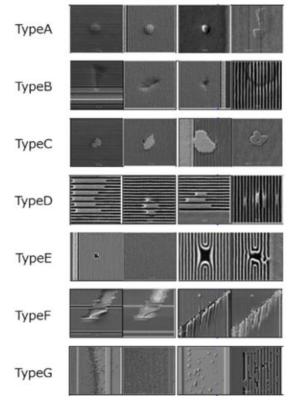


Fig. 1. Example of Defects.

Imoto et al., A CNN-Based Transfer Learning Method for Defect Classification in Semiconductor Manufacturing IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 32, NO. 4, NOVEMBER 2019

- Calibration in trace range needs standards of accurate defined water content
 - mainly dynamically generated
- Saturation to defined frost point requires low saturation temperatures

 Refrigeration challenges
- Two-pressure generation less cooling, and pressure drop for speed
 But requires formulae for vapour pressure and water vapour enhancement factor
- Flow mixing, blending, addition
 - (but zero gas ...)

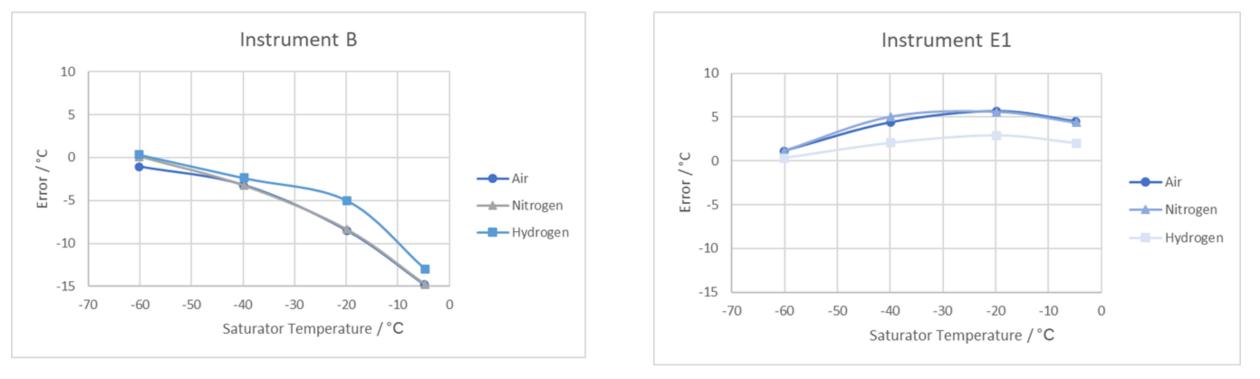
Stray water in calibration (again: desorption, leaks, back-diffusion ...)

- We might not use vacuum, baking? We flush with dry gas and wait ...
- Consequence is long wait times

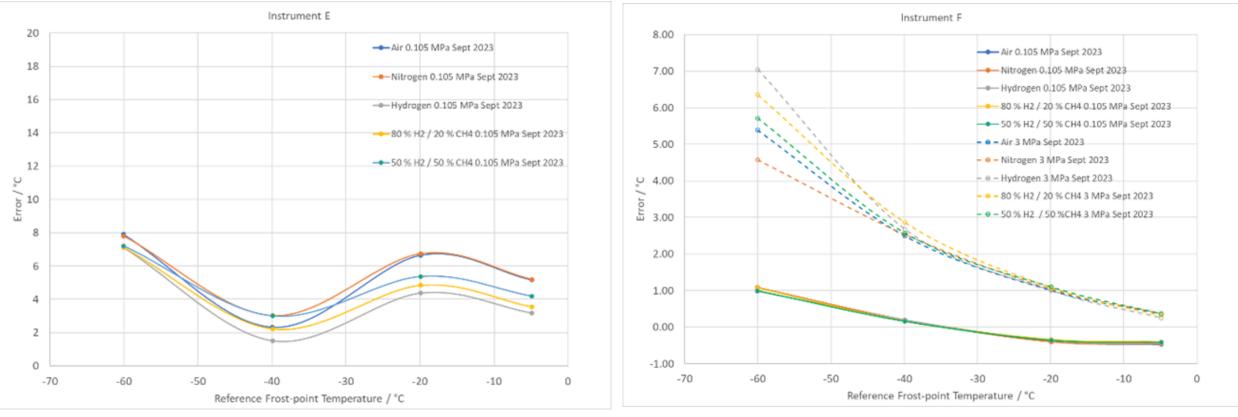
Some main challenges:

- Challenge of the trace range
 - Need for dry process gas
 - Calibration reference dry gases trace ranges
 - Impact of stray water
- Challenges of the use of multiple gases
 - Challenge of multiple measurement principles in this range and their sensitivity to different issues (pressure, species, response time, drift)
 - Challenge of gas non-ideality water vapour enhancement factors

Principles include:

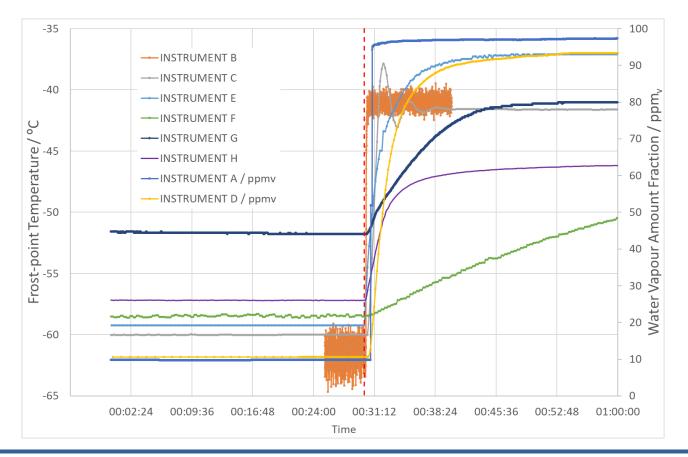

Electrical capacitance or resistance of sorbent film; condensation (optical, SAW ...); spectroscopic (absorption or cavity ring-down); electrolysis (P₂O₅); quartz oscillator; acoustic; mass spec (APIMS); optical fibre; zirconia; UV absorption/emission (Lyman-α); gravimetric; evaporative cooling (psychrometer or wet- and dry-bulb hygrometer); mechanical (dimensional change of "hair" or other); LiCl conductance; colour change; adiabatic expansion (cloud chamber)

and others still emerging ...


Instrument sensitivities

Graphs of sensing principles versus gas (mid to low range)

Hygrometer sensing principles – gas-dependence and pressure dependence


Near atmospheric pressure

Near atmospheric pressure and at 3 MPa

Instrument response times

Response time of a selection of instruments step upwards from nominal 10 µmol mol⁻¹ (frost point -60 °C)

Instrument	t ₉₀ response time / s		
INSTRUMENT A	19.30		
INSTRUMENT B	2.14		
INSTRUMENT C	26.83		
INSTRUMENT D	164.84		
INSTRUMENT E	306.13		
INSTRUMENT F	6872.48		
INSTRUMENT G	786.62		
INSTRUMENT H	402.72		

t₉₀ for INSTRUMENT F = 115 minutes

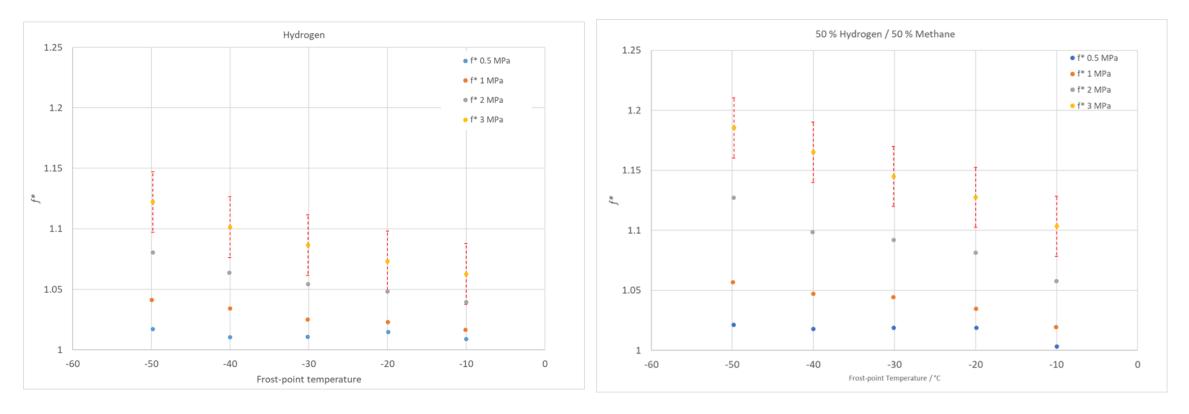
BUT ultra-trace range
 → nanomoles per mole (parts in 10 ⁹)
 ... far more challenging, much slower

Also, downwards response, hysteresis ...

- Challenges of the use of multiple gases
 - Challenge of multiple measurement principles in this range and their sensitivity to different issues (pressure, species, response time,
 - Challenge of gas non-ideality water vapour enhancement factors, $f(P, t_d)$

Real vapour pressure e' = ef

In air at -50 °C, $f \approx 1.007$, at 0.1 MPa (atmospheric pressure) $f \approx 1.08$, at 1 MPa


Values or functions for f

- poorly known for non-air gases
- weak information for < -50 °C

Gas non-ideality

Water vapour enhancement factor, NPL study, provisional data

Data measured and plotted are $f^* = f(P)/f(P_{atm})$. In fact, f^* underestimates enhancement factor by a few percent.

To address these challenges, we must continuously build expertise and capability:

- Improved, metrologically-sound, methods and techniques for trace water measurements;
- > Development of primary standards for trace water in selected gas matrices;
- > Improvement of thermophysical data knowledge of non-ideal humid gas mixtures;
- Demonstration of improved methods for trace water measurement in industrially relevant facilities (test beds).

Thank you for your attention

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States