

20IND06 PROMETH20 Metrology for trace water in ultra-pure process gases www.prometh2o.eu

Vito Fernicola, INRIM, Italy

Final Workshop

Gas Analysis 2024 Symposium / Porte de Versailles, Paris - France

Tuesday 30th of January 2024

Project Challenges

Water vapour is the single largest matrix contaminant in ultra-high purity (UHP) process gases used in key technology areas (e.g. semicon. and optoelectronics).

Its measurement presents great challenges to both process gas producers and analytical instrument makers.

The project is aiming at:

- filling the gap between the demand of traceable measurements and the available humidity standards currently limited at $\sim 1 \mu$ mol/mol.
- **developing traceable and improved methods** for trace water measurement relevant to the production and use of UHP gases.
- facilitating the uptake of the technology by the gas industry supply chain through exploiting knowledge and services developed in an European-wide metrology infrastructure.

The Consortium

19 partners from 12 countries \rightarrow 240 person-months

Braunschweig und Berlin

Project Objectives

- New primary standards for trace water vapour in N₂, Ar and H₂ down to 5 nmol/mol (or -105 °C frost point temperature) at pressures up to 1 MPa.
- New/improved measurement methods in the amount fraction range between 5 μmol/mol and 5 nmol/mol (*rel. uncertainty* 3 % to 8 %).
- New data and correlation equations of water vapour enhancement in N₂, Ar and H₂ in the temperature range from -30 °C to -90 °C and pressures up to 1 MPa.
- **Demonstration at industrial facilities** with real-time measurements and on-site calibrations.
- **Toolkits of metrological solutions** for robust measurement traceability in the production of UHP process gases.

Stakeholder Engagement

Steering Board made of 21 key stakeholders among gas producers, instrument manufacturers, and international scientific organisations.

Surveying Stakeholder Needs and Priorities

Achievements: Primary Standards for Trace Water

LFP primary humidity generator - Mark 2

- Frost-point temperature: -105 °C to -20 °C
- □ Water vapour mole fraction: 5 ppb to 1000 ppm
- \Box Pressure: 200 hPa to 0.68 MPa (N₂ and Ar)

Coulometric Trace Water Generator (CTWG)

- Amount fraction > 5 ppb
- Rel. uncertainty: 8 %

Permeation system based on a passivated MSB Range: 50 ppb to 5 ppm

Achievements: Improved Trace Water Analysers and **Enhancement Factor Measurements**

Far-UV spectroscopy system

UIU

- highly-modular gas cells: (0.5 to 100) cm;
- flow or static measurement: (0 to 100) bar;
- 100-cm cell with DURSAN[®] coatings;
 - two-way spectra analysis: "full" and "DOAS"

Microwave-based trace water hygrometers

to measure the enhancement factor of H₂O vapour in N₂, Ar, and H₂

Achievements: Improved Comb-assisted CRDS Optical Analyser

$x_w = (671 \pm 4) \, nmol/mol$

Contribution	Туре А	Туре В
(k=1)	(%)	
Statistical	0.5	
Line strength		0.3
Frequency scale		Negl.
Line shape model (SDVP)		0.1
RD per point & frequency step		< 0.2
Laser scan width		< 0.2
Gas temperature		0.05
Partition function		0.04
Pressure		0.05
Overall combined uncertainty = 0.7 %		

Achievements: Provision of (on-site) Traceability

Accelerated development and validation of a portable frost point generator (FPG)

Traceable assessment of state-ofthe-art commercial hygrometers down to -105 °C (5 ppb)

Test bed demonstrators

Industrial production facility of speciality gases that includes pure and UHP gases and humid gas mixtures.

- Availability of primary standard to provide traceability, also via calibration services, to instruments measuring trace water between 5 μmol/mol to 5 nmol/mol.
- Recommendation on suitable transfer standards to support future international comparisons in the trace water regime, either -65 °C to -105 °C or 5 μmol/mol to 5 nmol/mol.
- Contributions to new or improved guides and recommended values of thermo-physical properties of water-gas mixtures.
- Documented and validated software tools to estimate the enhancement of water vapour in N₂, Ar and H₂ and its uncertainty in the range between -30 °C and -90 °C and at pressure up to 1 MPa.
- **C** Establishment of an **European-wide measurement infrastructure**.
- □ Early impact on UHP gas manufacturing: on-site traceable calibration and measurement of water contamination demonstrated at industrially-relevant facilities.

Thank you for your attention

and

enjoy the PROMETH2O workshop!

research and innovation programme and the EMPIR Participating States