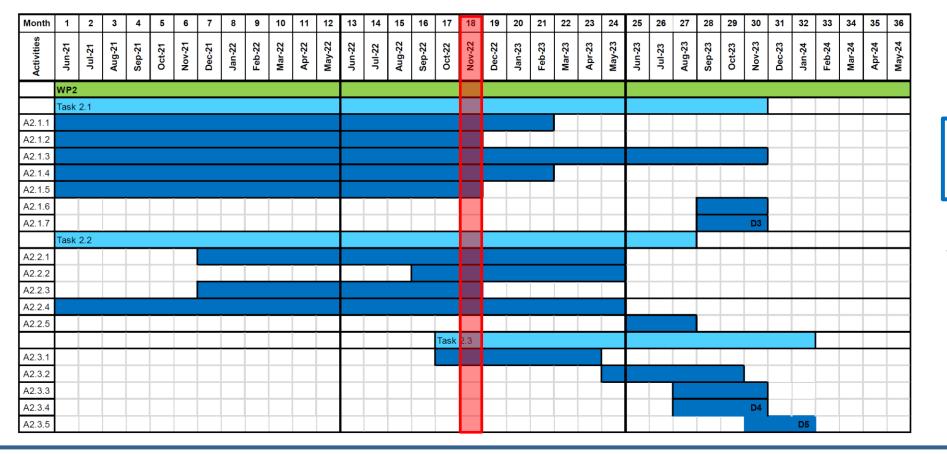


20IND06 PROMETH20

Provision of robust traceability to trace water measurements in real humid gas mixtures

Project Progress Meeting at M18

In person, hosted by VSL


2-3 November 2022

Development and validation of primary standards for trace water vapour measurements in ultra-pure gases:

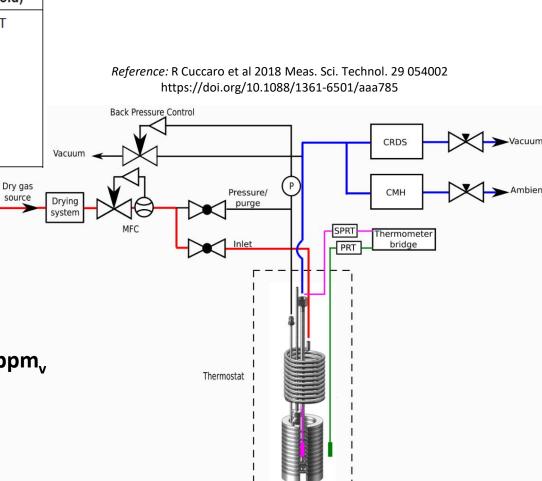
- by using a variety of complementary generation techniques (Task 2.1)
- by improving the knowledge of the non-ideal behaviour of humid gas mixtures (Task 2.2 Task 2.3)

3 Tasks All active at M18

Activities **2.1.2**, **2.1.5** and **2.2.3** accomplished by the end of November 2022.

Task 2.1

Development of primary humidity standards for trace water vapour in an increased range of gas matrices


06/21	05/22	11/22	02/23	05/23	11/23
M1 Task 2.1 Development of prim	M12 hary humidity standards	M18	M21	M24	M30
A2.1.1 Thermodynamic saturation-b	ased generator ($T_{\rm fp}$ = -105	°C, <i>P</i> = 0.5 MP	a)		
A2.1.2 Thermodynamic saturation-b ($T_{fp} = -90 \degree C, P = 1 \text{ MPa}$)	ased generator				
A2.1.3 Coulometric-based generator	(x _w = 5 ppb, P =0.11 MPa)			
A2.1.4 Permeation-based generator	(x _w = 50 ppb)				
A2.1.5 Mixed flow generator ($T_{\rm fp}$ = -9	95 °C, P = 1 MPa)				
				A2.1.6	Report
				A2.1.7	Report sub. to EURAMET
	PROMETH2O M18 Pro	ject Meeting		i	D3

Activity 2.1.1 INRIM

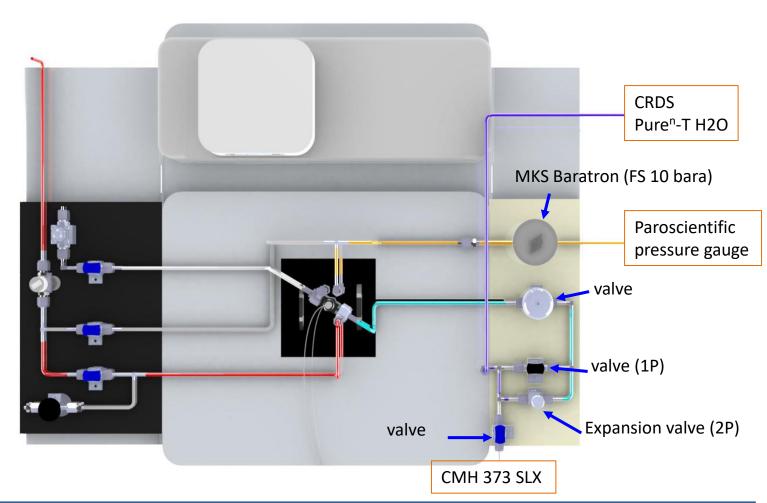
Activity number	Activity description	Partners (Lead in bold)
<mark>A2.1.1</mark> M21	INRIM will improve its thermodynamic saturation-based primary standard generator to generate the humid gas mixtures standard in nitrogen and argon at pressures up to 0.5 MPa and to extend the lower limit of frost-point temperature to -105 °C with a standard uncertainty of 0.35 °C. VTT will extend its saturation-based primary standard generator to -100 °C at 0.11 MPa to generate humid gas mixtures in nitrogen and air. INRIM and VTT will use such primary humidity standards to provide traceability to trace water analysers, such as the CC-FS-CRDS spectrometer (A1.1.1), high-quality CMH, and CE-FM spectroscopy hygrometer (A1.1.4) and underpin their validation in A1.2.1 to A1.2.3.	INRIM, ∨TT

Saturato

STARTING POINT

LFP HUMIDITY GENERATOR – Mark 1

- Single-pressure, single-pass humidity generator
- Frost-point temperature between -99 °C and -20 °C
- Water vapour mole fraction between 15 ppb_{ν} and 945 ppm_{ν} @1100 hPa
- Pressure: 200 hPa to 2400 hPa
- Carrier gas: Nitrogen


Activity 2.1.1 INRIM

LFP HUMIDITY GENERATOR–Mark 2 RANGE EXPANSION

- 2-pressure, single-pass humidity generator
- Frost-point temperature between -105 °C and -20 °C
- Water vapour mole fraction between 5 ppb_v and 1038 ppm_v@1000 hPa
- Pressure: 200 hPa to 6800 hPa
- Carrier gas: Nitrogen, Argon (to be done)

New trace water analysers:

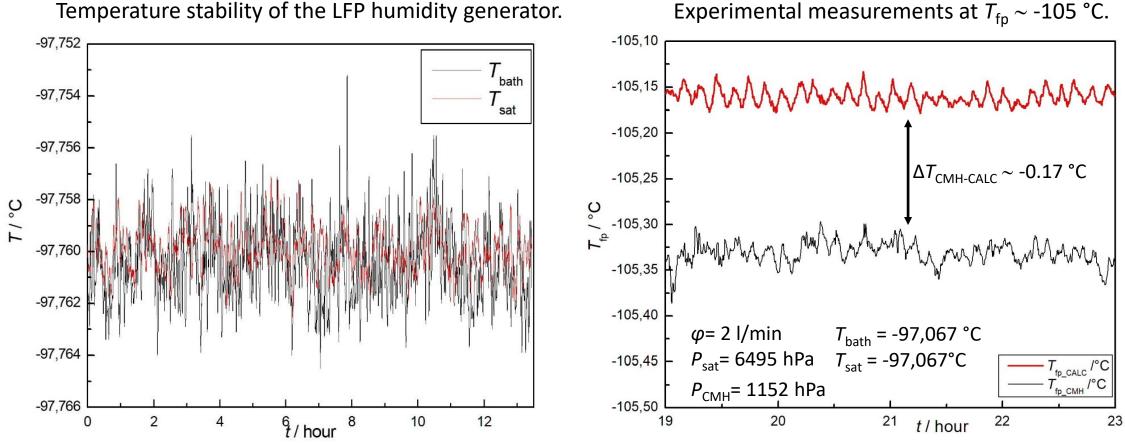
- CMH: MBW 373-SLX (-110 °C < $T_{\rm fp}$ < 20 °C; 50 kPa < P < 250 kPa)
- CRDS: Photonics Technologies Pureⁿ-T H2O (0-20 ppm in N₂, LDL 200 ppt)

PROMETH2O M18 Project Meeting

230 VOLT 24 VOLT

BBBBB

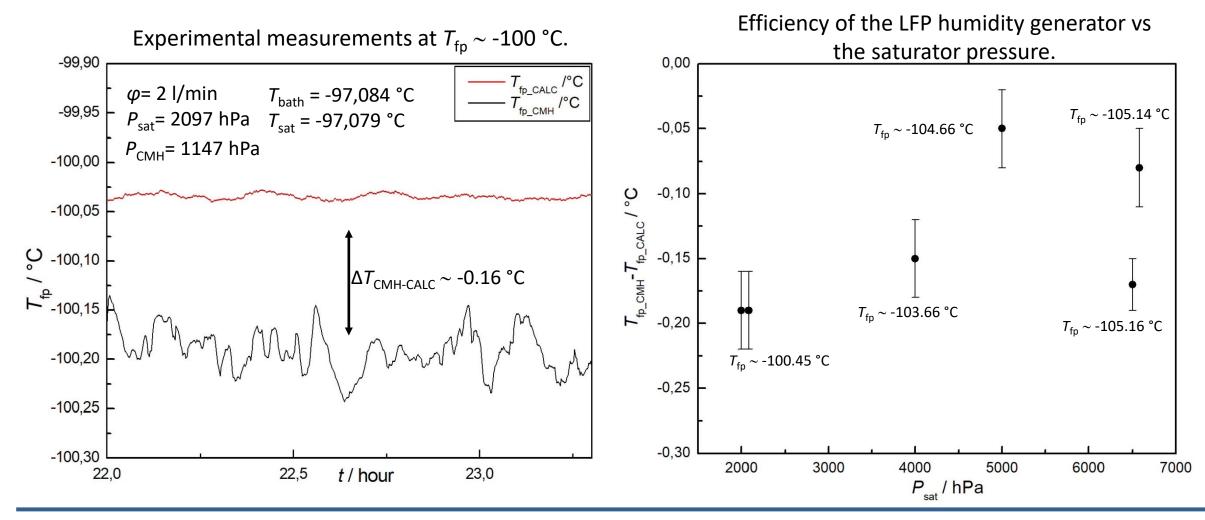
LFP HUMIDITY GENERATOR–Mark 2 EXPERIMENTAL APPARATUS



Activity 2.1.1 **INRIM**

– Mark 2 CHAR G

Temperature stability of the LFP humidity generator.



Activity 2.1.1 INRIM

CHARACTERISATION OF THE LFP HUMIDITY GENERATOR – Mark 2

IRiM

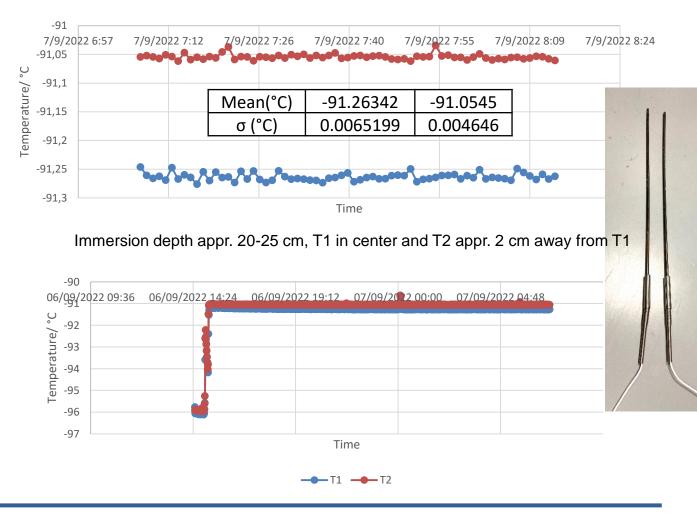
H₂O

Activity 2.1.1 Humidity generator - VTT

- The generator was operating at the beginning of the project.
- The thermostatic bath had some malfunctioning and was transported for repairment.
- We finally got the thermostatic bath repaired and tested.

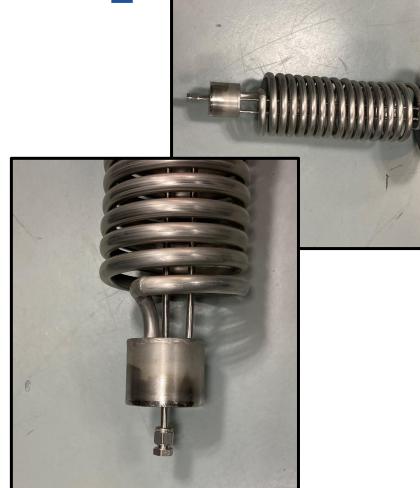
We look forward to reduce the uncertainty levels:

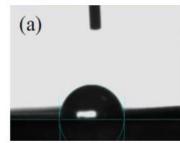
- Adsorption/desorption contributes to the uncertainty budget by 27%
- Temperature gradient contributes by 4%.
- Our target is to shrink the uncertainty budget possibly by 20-25%

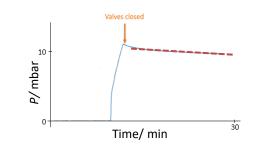


Characterization of the thermostatic bath

- It went down to -94.35 °C with setpoint -95 and the standard deviation in 2 hour measurement was 6 mK.
- Stability was tested down to -90 °C and also lifted from original immersion depth, which was 20 cm by:

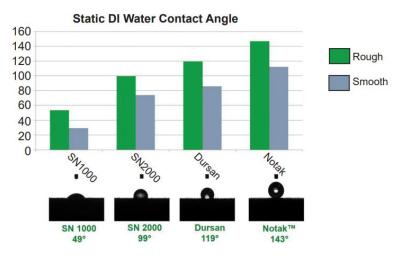

0 cm: T = -89.393 °C, σ= 8 mK +2 cm: T = -89.392 °C, σ= 8 mK +6 cm: T = -89.367 °C, σ= 7 mK


• Close to the specification ± 0.005 @ - 90 °C



Reduction of the water adsorption/desorption

Droplet of water on highly polished SS 316L



Pressure stabilization time is reduced significantly by introducing Dursan coating

Coating techniques based on Chemical Vapor Deposition (CVD) :

NON-WETTING

SilcoNert 2000 doubles the hydrophobicity of stainless steel and is commonly specified in moisture analyzer applications.

C2.a Task 2.1: Development of primary humidity standards for trace water vapour in an increased range of gas matrices

The aim of this task is to develop primary humidity standards for ultra-trace water vapour in an increased range of gas matrices (nitrogen, air, argon and hydrogen) based on a range of principles providing traceability through different routes.

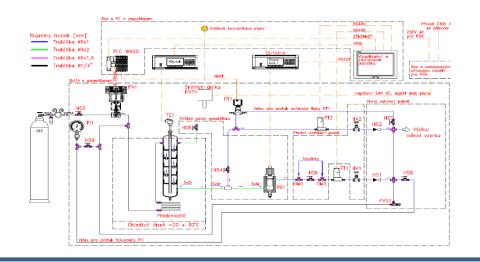
	Activity number	Activity description	Partners (Lead in bold)	
12/2022	A2.1.2 M18	CMI, INTA and UL will upgrade their saturation-based generators to produce humid gas mixtures in nitrogen and argon to extend the lower limit of reference frost-point temperatures to -90 °C and at pressures up to 1 MPa and above , with standard uncertainty of 0.25 °C at -90 °C. Only for INTA the pressure will go to 0.5 MPa.	<mark>CMI,</mark> INTA, UL	Measurements running
12/2023	A2.1.6 M30 A2.1.7 M30	 INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, and CETIAT using the results from A2.1.1 to A2.1.5 will write a summary report on the development of the trace water vapour standards describing the range and uncertainty achievable and the gas species in which reference humidity values can be generated. INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, and CETIAT will review the report from A2.1.6 and will send it to the coordinator. Once the report has been agreed by the consortium, the coordinator on behalf of INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, and CETIAT will then submit it to EURAMET as D3: 'Report on the development of primary trace water vapour standards describing the range, the estimated uncertainty and the gas species in which reference values can be generated with a target fraction range from 5 ppm to 5 ppb (-65 °C to -105 °C) with relative standard uncertainty less than 3 % to 8 % in selected gas matrices at pressures up to 1 MPa'. 	INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, CETIAT INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, CETIAT	inactive

A2.1.2

upgrade of saturation-based generator to produce humid gas mixtures in nitrogen and argon to extend the lower limit of reference frost-point temperatures to -90 °C and at pressures up to 1 MPa and above, with standard uncertainty of 0.25 °C at -90 °C

- Cryogenic bath and SPRTs prepared and characterised, implemented into an already existing system
- Validation at -90 °C_{fp} : measurements are running (efficiency of saturation, stability, precision, uncertainty,...)

PROMETH2O M18 Project Meeting



- **Primary humidity generator,** 1P1T type, thermodynamic saturation-based principle, in Prague:
 - Pressure: 15 MPa max.
 - ➢ Humidity range: (-80 to 30) °C_{dp/fp}
 - **Cas matrix:** Air, N_2 , Ar, CH_4 , natural gas
 - > Flow rate: up to approx. 2 L_N /min
 - ➤ U (k=2) from -80 °C_{fp} to -30 °C_{fp}:
 - ✓ at 1 MPa: 0.11-0.23 °C
 - ✓ at **0.1 MPa**: 0.09-0.15 °C or less

Activity 2.2.2

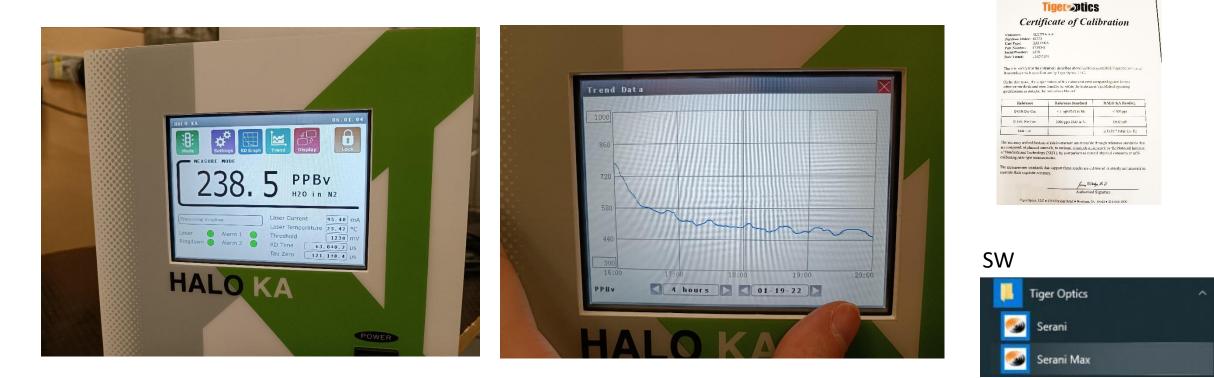
Current System - CMI

Kambič Calibration bath OB-22/2 ULT to -90 °C...

Thermometry bridge MI 6242T + resistance etalon - improved temperature measurement precision

Activity 2.2.2 New devices - CMI

New SPRT glass temperature resistance probe...



Thermodynamic saturator (expected maintaining function without modification)

PROMETH2O M18 Project Meeting

New fraction humidity analyzer at CMI: Tiger Optics, HALO KA H₂O – laser absorption CRDS hygrometer

PROMETH2O M18 Project Meeting

Activity 2.2.2 New devices - CMI

tracebility (NIST)

Activity 2.2.2 New devices - CMI

New fraction humidity analyzer at CMI: Tiger Optics, HALO KA H_2O

HALO KA H₂O Ultra-High Purity Gas Analyzer

Performance	
Operating range	See table on next page
Detection limit (LDL, $3\sigma/24h$)	See table on next page
Precision (1 σ , greater of)	± 0.75% or 1/3 of LDL
Accuracy (greater of)	± 4% or LDL
Speed of response	< 2 minutes to 95%*
Environmental conditions	10°C to 40°C
	30% to 80% RH (non-condensing)
Storage temperature	-10°C to 50°C
Gas Handling System and C	Conditions
Wetted materials	316L stainless steel
	(corrosive gas version optional)
	10 Ra surface finish
Gas connections	1/4" male VCR inlet and outlet
Leak tested to	1 x 10 ⁻⁹ mbar l / sec
Inlet pressure	10 – 125 psig (1.7 – 9.6 bara)
Flow rate	0.05 – 1.8 slpm
Sample gases	Most inert, toxic, passive
	and corrosive matrices
Gas temperature	Up to 60°C

 Weight

 Standard sensor
 28 lbs (12.7 kg)

Electrical and Interfaces	
Platform	Max series analyzer
Alarm indicators	2 user programmable
	1 system fault
	Form C relays
Power requirements	90 – 240 VAC, 50/60 Hz
Power consumption	40 Watts max.
Signal output	Isolated 4–20 mA per sensor
User interfaces	5.7" LCD touchscreen
	10/100 Base-T Ethernet
	USB, RS-232, RS-485
	Modbus TCP (optional)
Data storage	Internal or external flash drive
Certification	CE Mark

Performance, H ₂ O:		Range LDL (3o)		Precision (10) @ zero	
ES	In Nitrogen	0 – 20 ppm	300 ppt	100 ppt	
	In Helium	0 – 4 ppm	100 ppt	20 ppt	
INERT/ PASSIVE GASES	In Argon	0 – 9 ppm	130 ppt	45 ppt	
SSI	In Hydrogen	0 – 16 ppm	200 ppt	70 ppt	
PA	In Deuterium (² H ₂)	0 – 14 ppm	900 ppt	300 ppt	
0	In Oxygen	0 – 10 ppm	150 ppt	50 ppt	
E S	In Clean Dry Air (CDA)	0 – 18 ppm	300 ppt	100 ppt	
/ GENAT GASES	In CO	0 – 24 ppm	600 ppt	200 ppt	
OXY GENA TED GASES	In CO ₂	0 – 25 ppm	800 ppt	300 ppt	
•	In COS	0 – 23 ppm	4 ppb	1.4 ppb	
v	In Neon	0 – 5 ppm	100 ppt	30 ppt	
RARE GA SES	In Krypton	0 – 11 ppm	160 ppt	60 ppt	
<u>ی</u> م	In Xenon	0 – 13 ppm	250 ppt	90 ppt	
. <u></u>	In Cl ₂ *	0 – 25 ppm	650 ppt	220 ppt	
ROSIVE GASES	In HCIt	0 – 50 ppm	1200 ppt	400 ppt	
2589	In HBr*	0 – 50 ppm	12 ppb	4 ppb	
	In SF ₆	0 – 15 ppm	400 ppt	140 ppt	
SES	In NF ₃	0 – 20 ppm	600 ppt	200 ppt	
B	In CF ₄	0 – 15 ppm	800 ppt	300 ppt	
E	In C ₂ F ₆	0 – 15 ppm	1200 ppt	400 ppt	
IAN	In C ₃ F ₈	0 – 20 ppm	1200 ppt	400 ppt	
ORI	In C ₄ F ₆	0 – 25 ppm	150 ppb	50 ppb	
FLUORINATED GASES	In C ₄ F ₈	0 – 20 ppm	1200 ppt	400 ppt	
	In C ₅ F ₈	0 – 32 ppm	8 ppb	3 ppb	
DRIDE GASES	In 1% GeH ₄ /99% H ₂ mixture	0 – 16 ppm	7 ppb	2.5 ppb	
DRI	In 10% GeH4/90% H2 mixture		35 ppb	12 ppb	

*Corrosive gas version require

 $^{\textrm{t}}\text{Corrosive gas version recommended for H_2O concentration that could exceed 1 ppm$

Contact us for additional analytes and matrices. U.S. Patent # 7,277,177

Tiger Optics, LLC 275 Gibraltar Road, Horsham, PA 19044 Phone: +1 (215) 656 4000 · Fax: +1 (215) 343 7168 sales@tigeroptics.com · www.tigeroptics.com

PROMETH2O M18 Project Meeting

 Task 2.1: Development of primary humidity standards for trace water vapour in an increased range of gas matrices

A2.1.2	Upgrade their saturation-based generators to extend the lower limit of reference frost-point	CMI,
M18	temperatures to -90 °C and at pressures up to 0.5 MPa for INTA with standard uncertainty of 0.25	INTA,
	$\frac{-c}{-c}at^{-50}c.$	UL

PERFORMED:

- Recalibration of pressure and temperature sensors of 2-P based on saturation standard humidity generator.
- ✓ Maintenance and checking of auxiliar systems:
 - <u>Nitrogen</u> \rightarrow SAES Getter purifiers
 - Compressed air system free of CO₂

 Task 2.1: Development of primary humidity standards for trace water vapour in an increased range of gas matrices

A2.1.2 M18	Upgrade their saturation-based generators to extend the lower limit of reference frost-point CMI, temperatures to -90 °C and at pressures up to 0.5 MPa for INTA with standard uncertainty of 0.25 INTA, °C at -90 °C.			
Water Cooling System - Maintenance dossier was approved. used is DAMAGED - Waiting for successful bidding company come to repair the wate				
ACTUAL STATUS: Experimental measurements <u>not started</u> for reasons beyond the laboratory.				

A2.1.2 CMI, INTA and UL will **upgrade their saturation-based generators** to extend the lower limit of reference frost-point temperatures to **-90** °C and at pressures up to **1 MPa** and above (INTA to 0.5 MPa) with standard uncertainty of 0.25 °C at -90 °C. Such trace water generators in nitrogen and argon will perform/support the investigation of water vapour enhancement factor in Task 2.2. Participation in the pilot study described in Task 1.3 requires these standards to be available.

The existing generator

- generator designed for frost point -95 °C at atmospheric pressure – single-pass
- the weak link for higher pressure was the saturator

withstands higher pressures, but not designed for (safety, swelling, cross-channel leakage)

PROMETH2O M18 Project Meeting

A2.1.2 M18	CMI, INTA and UL will upgrade their saturation-based generators to extend the lower limit of reference frost-point temperatures to -90 °C and at pressures up to 1 MPa and above (INTA to 0.5 MPa) with standard uncertainty of 0.25 °C at -90 °C.	
	Such trace water generators in nitrogen and argon will perform/support the investigation of water vapour enhancement factor in Task 2.2. Participation in the pilot study described in Task 1.3 requires these standards to be available.	

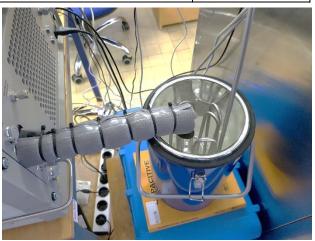
The upgrade

- the new saturator designed and manufactured for >1 Mpa.
- reinforced housing,... (Directive 2014/29/EU)
- pressure regulation redesigned

A2.1.2	CMI, INTA and UL will upgrade their saturation-based generators to extend the	CMI, INTA, UL
M18	lower limit of reference frost-point temperatures to -90 °C and at pressures up to 1	
_	MPa and above (INTA to 0.5 MPa) with standard uncertainty of 0.25 °C at -90 °C.	
	Such trace water generators in nitrogen and argon will perform/support the	
	investigation of water vapour enhancement factor in Task 2.2. Participation in the pilot	
	study described in Task 1.3 requires these standards to be available.	

Issues

- saturator prototype not sufficient surface finish -> delay
- delay also due to staff issues (key person left, but still helps)
- expected to finish by M22 (to lineup with task 2.2.2, due in M24)



A2.1.2 CMI, INTA and UL will **upgrade their saturation-based generators** to extend the lower limit of reference frost-point temperatures to **-90** °C and at pressures up to **1 MPa** and above (INTA to 0.5 MPa) with standard uncertainty of 0.25 °C at -90 °C. Such trace water generators in nitrogen and argon will perform/support the investigation of water vapour enhancement factor in Task 2.2. Participation in the pilot study described in Task 1.3 requires these standards to be available.

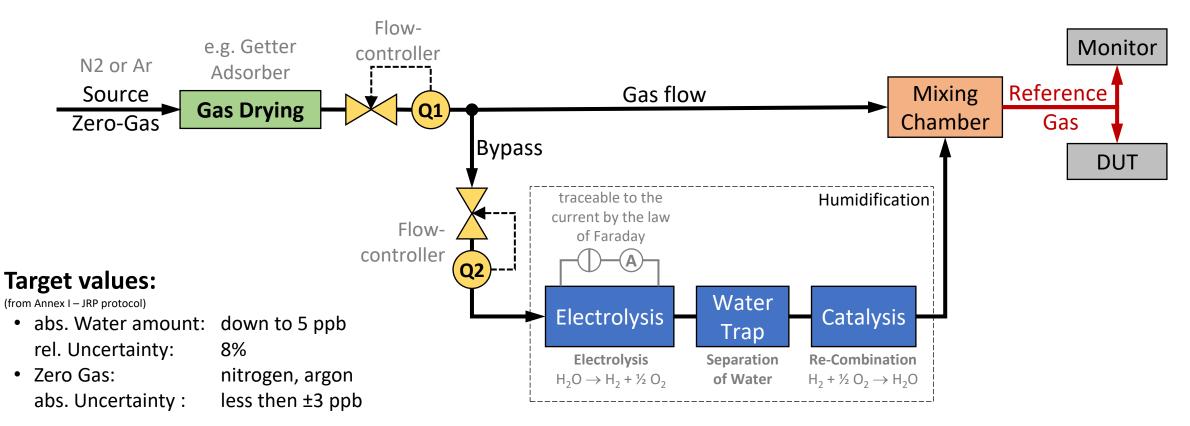
Expected issues with instruments

- LXHX issues below -80 °C
- unsuccessful bid for SLX
- planned retry (SLX, LX, ...)
- additional requirements for enh. factor measurements

• Task 2.1.3 – M30 (Development/Testing):

Development of a coulometric principal standard to generate water vapour in nitrogen and argon. Tests of selected instruments with the generator. (PTB, MBW)

• Task 2.1.6 – M30 (Report):


Summary report on the development of the trace water vapour standards. (INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, CETIAT)

• Task 2.1.7 – M30 (Review):

Review of the report (A2.1.6) and send it to the coordinator. (INRIM, VTT, CMI, INTA, UL, PTB, MBW, VSL, CETIAT)

Basic setup of the Coulometric Trace Water Generator (CTWG)

Based on the idea of: P. Mackrodt, "A New Attempt on a Coulometric Trace Humidity Generator", Int J Thermophys 33, 1520–1535 (2012). DOI 10.1007/s10765-012-1348-0

Activity 2.1.3 Survey of current and next steps - PTB

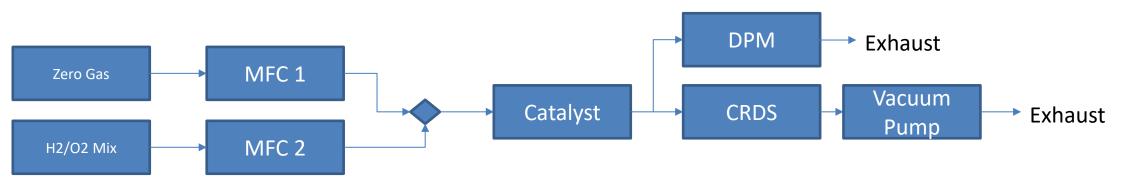
Finished

- Development of overall Coulometric Trace Water Generator (**CTWG**) concept
- Initial analyses of catalysts for water synthesis
 - Equation: $2 H_2 + O_2 \rightarrow 2 H_2O$
- Initial tests of commercial and newly developed gas purification systems
 - Detection: high sensitivity H₂O Cavity Ring Down Spectroscopy (CRDS)

Steps in progress

- In-depth analysis of catalysts
 - commercial product vs. new designs
- In-depth investigation of gas purification systems
- Test of electrolysis cell
 - reported, newly developed and alternative designs
- Acquisition of hardware
 - Gas purification (Cooling Trap, Gas Drying)
 - Electrolysis Cell

Schedule for major steps

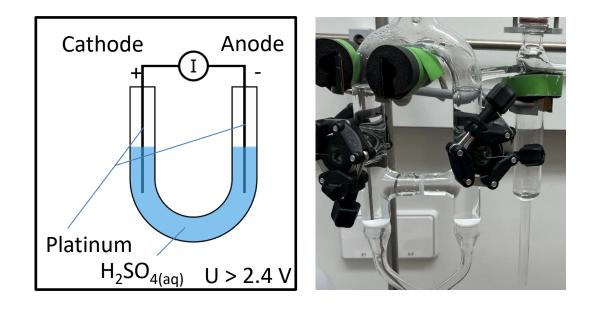

- Elaboration of final subcomponent design
- Acquisition of hardware (see above)
- Finalization of system design (system vs subcomponents)
- Commissioning and measurements

22/q1 23 ongoing q2 23 until Nov 23

Activity 2.1.3 Catalyst - PTB

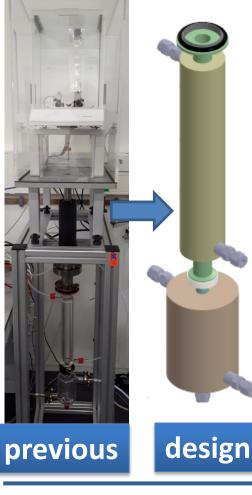
Catalyst

- Active Material: Platinum
- Investigated 3 designs
 - Flow 3-5 In/min
 - Environment: Standard RT and p
- Tested Range: approx. 500 ppb 80 ppm


Activity 2.1.3 Electrolysis and Gas Purification - PTB

Electrolysis Cell

- Principle:
 - Platinum electrodes with aqueous acidic electrolyte
- Evaluation of design
 - old vs. new vs. commercial
- Performance Analysis of Cell


Gas Purification

- Water Trap
 - Based on Cooling Trap
- Gas Drying
 - Study on enhancing system

Set up a permeation system based on a passivated magnetic suspension balance to generate primary standard of water amount fractions following ISO 6145-10 and ISO 6145-7.

Target range: in the range of 50 nmol/mol up to 5 µmol/mol

Matrix gases: N₂ and H₂

Initial steps taken:

- 1) Completed design. External company manufactured metal chamber with less connections compared to glass chamber
- **Ordered new purifier** 2)
- 3) Started testing

Activity 2.1.4

new chamber

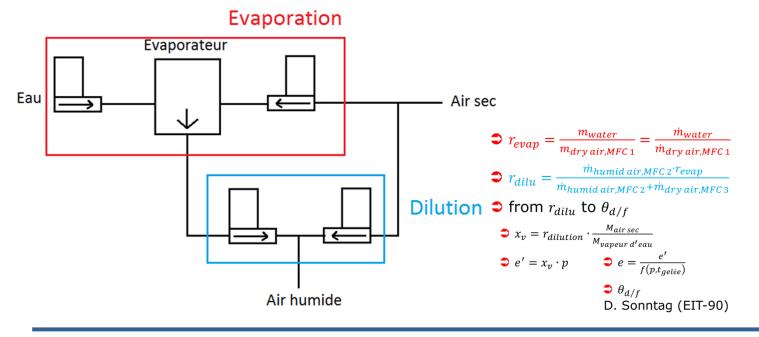
• CRDS analyzer Tiger Optics

Analyzer broke down (June). Back in October. Repair \$\$\$\$\$

• Permeation system

- Water bath broke. Ordered a new one (February). Order disappeared from ordering system. Spare water bath installed. Also broke down. Made new order. Delivery delayed to November.

- Permeation system hardware 13 years old. Issues with operating. New hardware (electronics & PC) ordered and will be delivered in December.



Activity 2.1.5 CETIAT

Activity number		Partners
A2.1.5 M18	CETIAT will upgrade its mixed flow generator in pressure, from 0.1 MPa up to 1 MPa, and in frost point temperature, from -85 °C down to -90 °C, possibly -95 °C, with a standard uncertainty of 0.25°C.	CETIAT

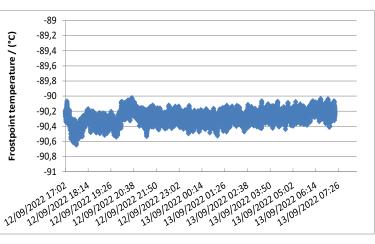
• Upgrade of the mixed flow generator / JRP METEOMET 2

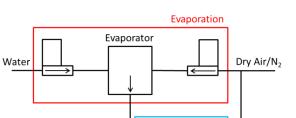
PROMETH2O M18 Project Meeting

Activity 2.1.5 CETIAT

- Upgrade of the mixed flow generator
 - Pressure range from 40 kPa to 1000 kPa
 - Successful implementation

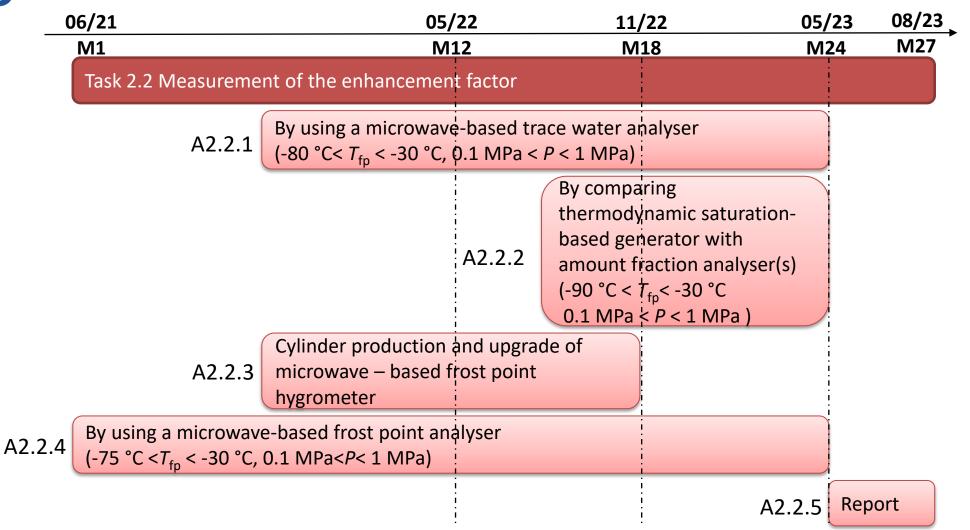
CETIAT


ensemble, innover et valide


- SI traceability of reference instruments
- Frost point range

 H_2O

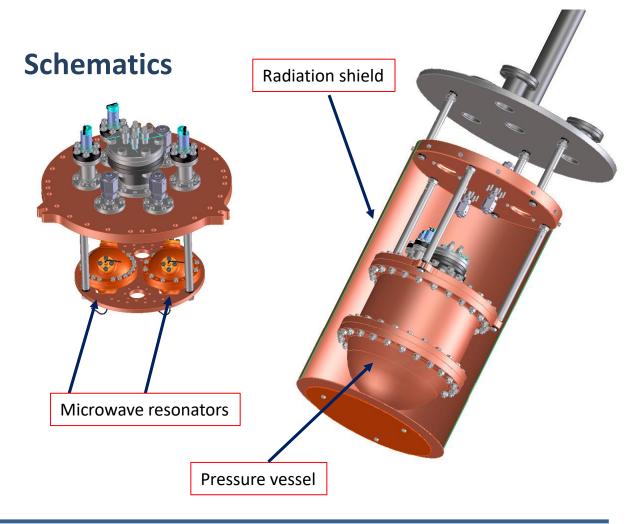
- Upgrade down to -90 °C
 - Use of molecular sieve
- Upgrade down to -95 °C
 - Additional dilution step is considered
- Uncertainty $U_{k=2}$ =0,35 °C
 - Uncertainty budget established
 - Validation to be done (ILC)



Task 2.2 Measurement of the enhancement factor in selected humid gas mixtures

CNAM, contribution to the project (first 18 months):

- Conception of the new hygrometer (Activity A2.2.1)
- Coordination with CETIAT (Activity A2.2.1)
- Study of the equation of the system (Activity A2.2.1)

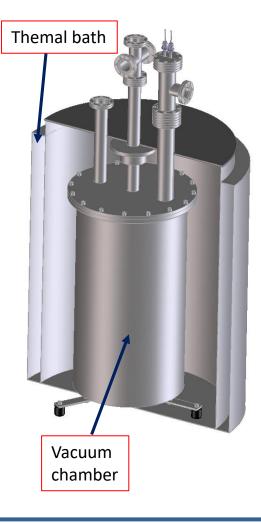

Activity 2.2.1 New hygrometer - CNAM

New hygrometer (activity A2.2.1)

Design of the new hygrometer system operating up to a pressure of 7-10 bar: we have completed the design of the new system.

The manufacturing procedure and the purchase process are slowed down at the administrative level.

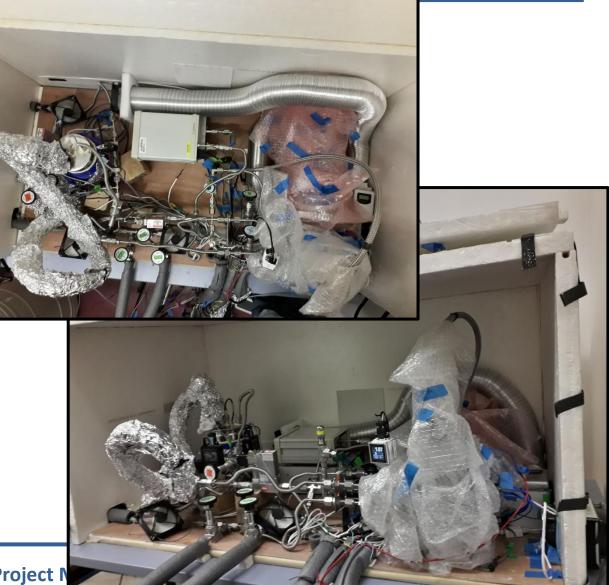
Possible risks: bureaucracy and shortage of raw materials (copper, aluminum) could lengthen manufacturing times by several months.



Activity 2.2.1 New hygrometer – CNAM/CETIAT

Coordination with CETIAT (activity A2.2.1)

The partners CETIAT and CNAM are concerting the availability of the experimental equipment of the partnership of this project.


Activity 2.2.1 Old hygrometer – CNAM

Study of the equations of the system (activity A2.2.1)

CNAM has started to modify the actual experimental setup to perform preliminary measures: modification and improvement to perform from 1.2 bar to 1.9 bar.

Preliminary measures are in progress. Robustness test, modification of some components.

Actual pressure limit: 2 bar.

C2.b Task 2.2: Measurement of the enhancement factor in selected humid gas mixtures

The aim of this task is to improve the measurements available for water vapour enhancement factor in nitrogen, argon and hydrogen at selected temperatures and pressures, in the frost-point temperature range between -90 °C and -30 °C and pressure range from 0.1 MPa to above 1 MPa.

	Activity	Activity description	Partners	
	number A2.2.2	CMI and UL, using the upgraded saturation-based generators from A2.1.2, will perform	(Lead in bold) <mark>CMI</mark> , VSL, UL	
6/2023	M24	independent measurements of the enhancement of water vapour in nitrogen and argon in the frost-point temperature range between -90 °C and -30 °C . VSL, using its existing standard, will confirm the measurements to -80 °C at selected pressures from 0.1 MPa to above 1 MPa .		inact
		These independent measurements will evaluate the non-ideality of gas mixtures (i.e., enhancement factor) with trace amount of water by comparing humid gas mixtures generated by frost-point temperature standards with corresponding humidity quantities as measured by amount-of-substance fraction analyser(s).		
9/2023	A2.2.5 M27	CNAM, using the results from A2.2.1 to A2.2.4 will prepare a report stating the improved measurements for water vapour enhancement factor in nitrogen, argon and hydrogen at selected temperatures and pressures, in the frost-point temperature range between -90 °C and -30 °C and pressure range from 0.1 MPa to above 1 MPa.	<mark>CMI</mark> , VSL, UL,	inact
		CNAM, CETIAT, CMI, VSL, UL, INTA, CEM, UVa will review the report and provide feedback.		

Activity 2.2.2 Enhancement factors of nitrogen and argon - VSL

Perform measurements of the enhancement factors of water vapour in different carrier gasses.

Target frost point range: 500 ppb / -80 °C , 1 ppm / -75 °C, 10 ppm / -60 °C , 127 ppm / -40 °C, 376 ppm / -30 °C **Pressure range:** 0.1, 0.2, 0.5, 0.7, 0.9, and 1 MPa. **Carrier gas:** N₂ and Ar.

In progress:

- 1) Training of scientist (ongoing)
- 2) Testing and revalidation of the two-pressure system
- 4) Waiting on the repair of the ethanol bath.
- 3) Validation of system with the enhancement factors for air: CMH pressure at saturator pressure and atmospheric pressure

CEM CENTRO ESPAÑOL DE METROLOGÍA

Activity 2.2.3 CEM

Activity	Activity description	Partners
number		(Lead in bold)
A2.2.3 M18	CEM will produce cylinders containing static, pressurised humid gas mixtures in matrices of nitrogen, argon and hydrogen with amount fractions of water vapour down to 1 µmol mol ⁻¹ . The target standard uncertainty for the cylinders is 3 % of value. The gas cylinders will be used to investigate water vapour enhancement factor by the microwave-based method developed by UVa.	
	CEM, March 2022	
	UVa and CEM agreed to start with H ₂ O in matrix N ₂ mixture with	
	concentration level of 500 μmol·mol ⁻¹ . Expected date of preparation of the first mixture by May 2022.	
	CEM, 11 th July 2022	
	At the beginning of June CEM informed UVa about the delay on preparation of the proposed mixture because of shortage of staff and increased workload. Some calculation on how the mixture could be prepared have been done but the new expected date is still pending. End of activity is scheduled by November 2022.	
	CEM, 26 th October 2022	
	The mixture proposed in March is not prepared. CEM confirms a delay in the achievement of the activity.	
	New schedule: CEM proposes to UVa a 3 months period to get the mixture prepared and delivered. UVa agreed but has expressed concern about any further delay.	

PROMETH2O M18 Project Meeting

Universidad de Valladolid

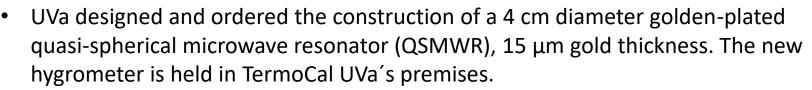
Activity 2.2.3 - 2.2.4 UVa

A2.2.3 M24 A2.2.4 M18	UVa and INTA, using the upgraded saturation-based generator from A2.1.2 and upgraded microwave-based frost point hygrometer in A2.2.3, will perform measurements of the enhancement of water vapour in nitrogen, argon and hydrogen in the frost-point temperature range between -75 °C and -30 °C at selected pressures from 0.1 MPa to above 1 MPa.	
	These measurements will evaluate the non-ideality of gas mixtures (i.e., enhancement factor) with trace amount of water by comparing humid gas mixtures generated by trace humidity standards (saturator-based generators) with corresponding humidity quantities as measured by amount-of-substance fraction analyser.	
	CEM confirms a delay in the achievement of the activity. New schedule: CEM proposes to UVa a 3 months period to get the mixture prepared and delivered. UVa agreed but has expressed concern about any further delay.	

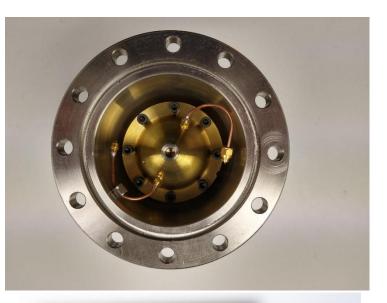
- UVa designed and ordered the construction of a 4 cm diameter golden-plated quasi-spherical microwave resonator (QSMWR), 15 μm gold thickness. The new hygrometer is held in TermoCal UVa's premises.
- The new QSMWR has been tested. Antennas have been tuned offering high quality resonant modes. Software has been upgraded and fully setup.
- The construction of a new thermostat for the new QSMWR is completed.
- INTA has recalibrated the temperature and pressure sensors of the frost-point two pressure-two temperature saturation-based generator, an upgraded THUNDER SCIENTIFIC 4500 model, this equipment is now in TermoCal. INTA has calibrated of the transfer standard dew point hygrometer, MBW, DP 30 model, this equipment is now in TermoCal.
- The integration of the hygrometer, thermostat, QSMWR, control and software is being undertaken.

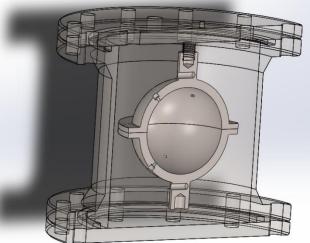
Universidad de Valladolid

 N_2 , Ar, H_2 Impurities (H_2O): Accurate Thermophysics. f


Quasi-Spherical MW Resonator

200 K < T < 400 K U(T) = 4 mK p < 3 MPa $U_r(p) = 0.015\%$


 $D_x = 50.08 \text{ mm}$ $D_y = 50.16 \text{ mm}$ $D_z = 50 \text{ mm}$



• The new QSMWR has been tested. Antennas have been tuned offering high quality resonant modes. Software has been upgraded and fully setup.

Activity 2.2.4 UVa

Universidad de Valladolid

Activity 2.2.4 UVa

THUNDER SCIENTIFIC 4500

Dew point hygrometer, MBW, DP 30 model

New bath

- The construction of a new thermostat for the new QSMWR is completed.
- INTA has recalibrated the temperature and pressure sensors of the frost-point two pressure-two temperature saturation-based generator, an upgraded THUNDER SCIENTIFIC 4500 model, this equipment is now in TermoCal. INTA has calibrated of the transfer standard dew point hygrometer, MBW, DP 30 model, this equipment is now in TermoCal.
- The integration of the hygrometer, thermostat, QSMWR, control and software is being undertaken.

• Task 2.2: Measurement of the enhancement factor in selected humid gas mixtures

	A2.2.4	UVa will upgrade its <u>microwave-based</u> FP hygrometer to perform measurements of the <u>enhancement factor of water vapour in N₂, Ar and H₂ in the FP range <u>between (-75 and -30)°C</u> at prossures from (0.1 to above 1) MPa. The traceability to FP temperature will be provided by INTA</u>	11\/a	
		enhancement factor of water vapour in N ₂ , Ar and H ₂ in the FP range between (-75 and -30)°C at	ova,	
M24	M24	pressures from (0.1 to above 1) MPa. The traceability to FP temperature will be provided by INTA.		

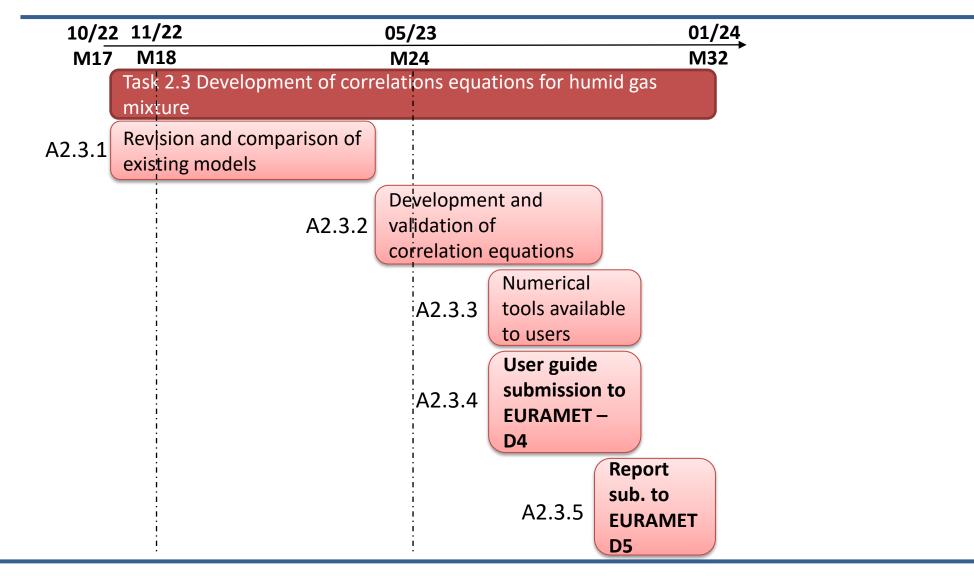
MILESTONES:

Humidity Generator Portable + Chilled Mirror Hygrometer in UVa facilities

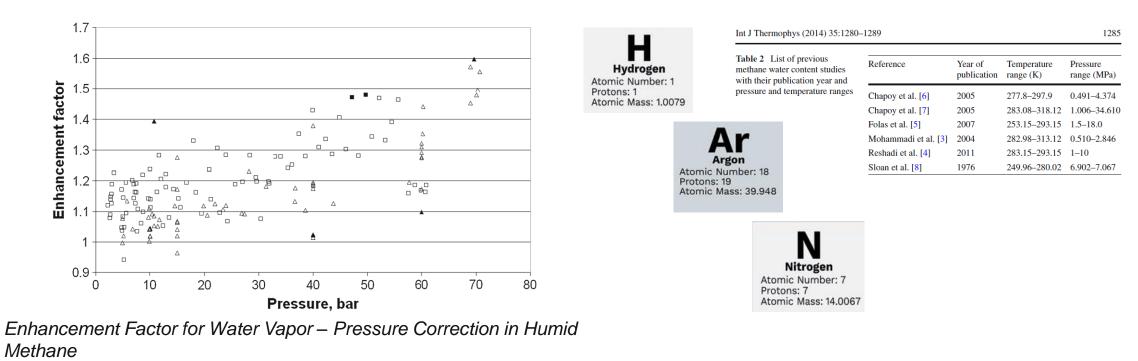
Assembled together with MW-based hygrometer \rightarrow FP temp. \geq -30 °C

 FUTURE ACTIONS:
 □
 Next Range Humidity Generator Portable + Chilled Mirror Hygrometer will be available.

 FP temp. ≥ -75 °C at 0.1 MPa in December.


ACTUAL STATUS: Supporting UVa needs Delayed but under way

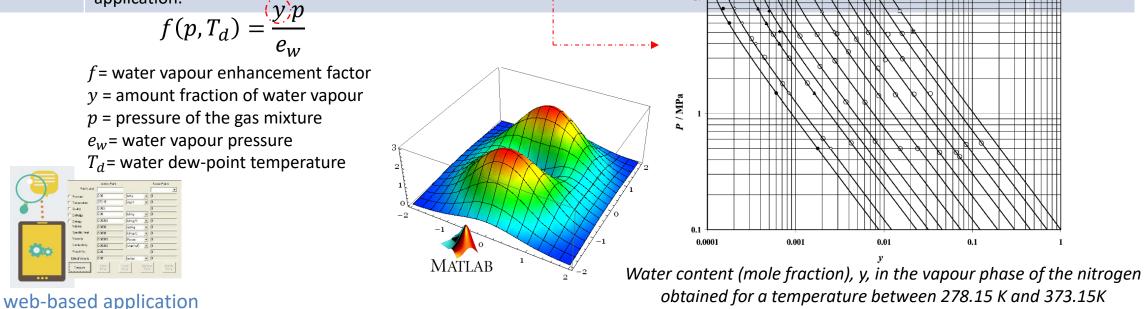
Task 2.3 Development of correlation equations for humid gas mixtures between -30 °C and -90 °C from 0.1 MPa to above 1 MPa



Task 2.3: Activities

 How
 Bit with the second back of the second

Existing non-ideal humid gas mixtures models - UNICAS


H. A. Sairanen, M.O. Heinonen

UNIVERSITÀ DEGLI STUDI

Activity 2.3.1

DICASSING EDITLATED MERITADEGUISTICE

Activity
(Deadline)Activity descriptionPartnersA2.3.3
(M30)Activity will start on M27. Based on the report regarding the improved measurements for water vapour enhancement
factors from A2.2.5, UNICAS and VTT will implement and validate numerical tool(s), such as LabView, Matlab script, Java,
Visual basic script or the like, to estimate the enhancement factor and its uncertainty in nitrogen, argon and hydrogen in
the temperature range between -90 °C and -30 °C at selected pressures from 0.1 MPa to above 1 MPa. The validated
numerical tool(s) will be software-implemented and be made freely available to the users in the form of a web-based
application.Implement of the users in the form of a web-based
application.Implement of the users in the form of a web-based
application.

Activity 2.3.1

Thank you for your attention

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States