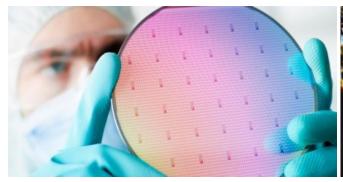


20IND06 PROMETH20

Metrology for trace water in ultra-pure process gases: goals and challenges


Vito C. Fernicola, INRIM

Report to EURAMET TC-T, 28 April 2022

Identified needs

Semiconductor manufacturing - demands for UHP process gases with total impurities as low as few ppb.

Organic electronics - highly moisture-sensitive, needs ultra-dry manufacture and vapour barrier coatings.

UHP bulk process gases - need to be manufactured with total impurities below 1 ppm in volume (grade N6.0 or better).

Utility power generation - needs dry hydrogen (<5 ppm) to cool high-efficiency stationary generators.

Instrument manufacturers - need traceable standards to support their product development while endusers rely on them for instrumental testing and calibration.

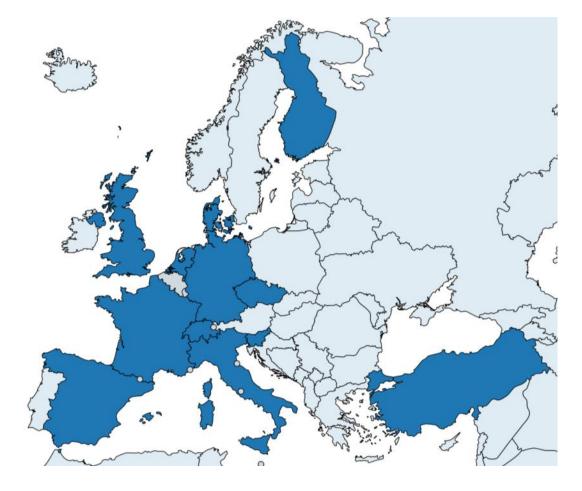
Project challenges

Water vapour is the single largest matrix contaminant in ultra-high purity (UHP) process gases used in key technology areas.

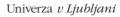
Its measurement presents great challenges to both gas manufacturers and analytical instrument makers.

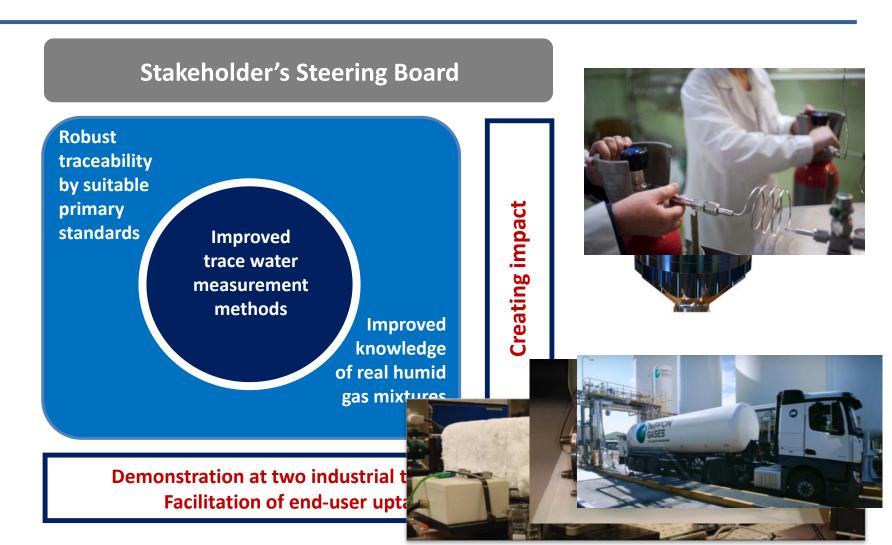
- To fill the gap between the demand of traceable measurement and the available humidity standards currently limited at ~1 ppm.
- To develop traceable and improved methods for trace water measurement relevant to the production and use of UHP gases.
- To facilitate the uptake of the technology by the gas industry supply chain through exploiting knowledge and services developed in an European-wide metrology infrastructure.

PROMETH2O objectives


- ✓ **New measurement methods** in the amount fraction range between 5 ppm and 5 ppb with relative standard uncertainty between 3 % and 8 %.
- ✓ **New primary standards** for trace water vapour in N₂, Ar and H₂ down to 5 ppb (or -105 °C frost point temperature) at pressures up to 1 MPa.
- ✓ **New data** and correlation equations of water vapour enhancement in N_2 , Ar and H_2 in the temperature range from -30 °C to -90 °C and pressures up to 1 MPa.
- ✓ **Demonstration** at selected industrial settings with real-time measurements and on-site calibrations.
- ✓ A **toolkit of metrological solutions** for robust measurement traceability in the production of ultra-pure process gases, by leveraging on improved standards and range-extended measurement capabilities.

The Consortium



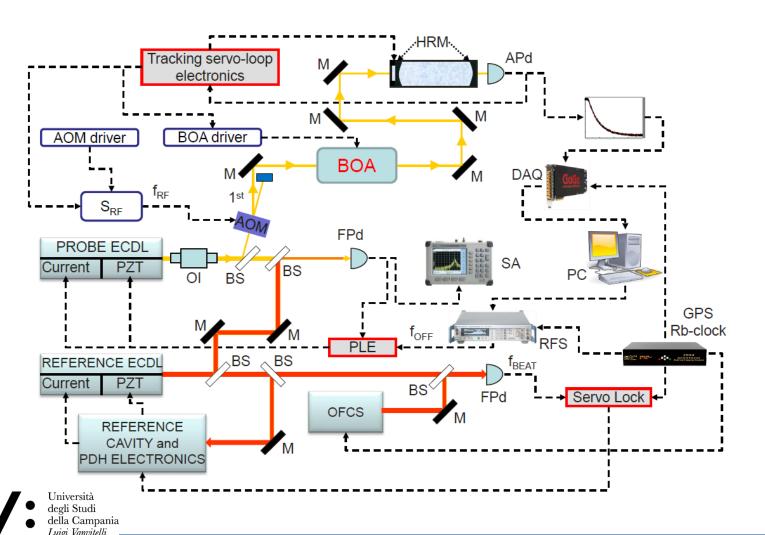


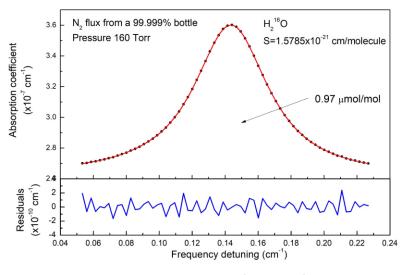
19 partners from 12 countries → 240 person-months

Project implementation - Month 9

Improved trace water measurement methods and techniques

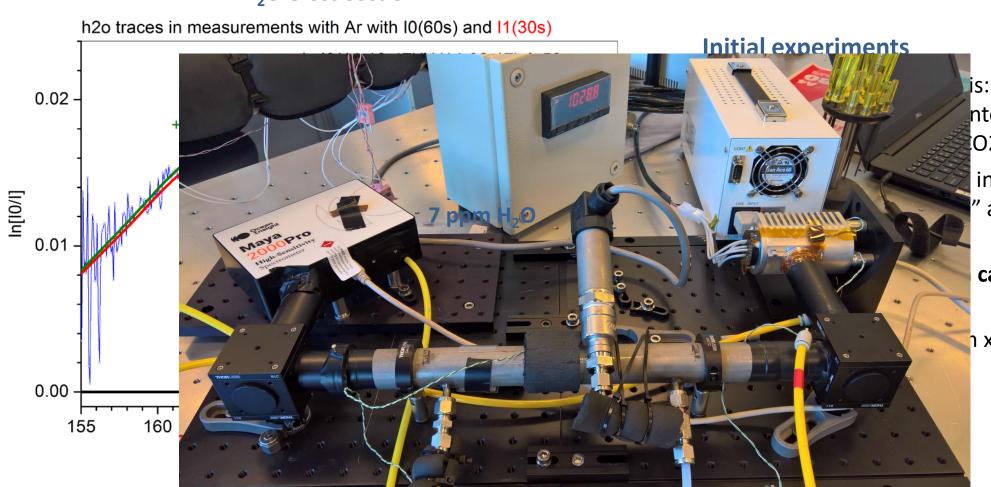
Development and improvement of optical analysers


- Target: H₂O traces in Ar, N₂, H₂ [from 5 ppm (-65 °C) to 5 ppb (-105 °C) @ 0.1 MPa].
- Relative uncertainty: 3 % (at 5ppm) to 8 % (at 5 ppb)


4x systems

- Enhancements in NIR comb-calibrated frequency-stabilized cavity ring down spectrometer (CC-FS-CRDS);
- □ NIR cavity-enhanced frequency modulated (CE-FM) spectroscopy hygrometer development;
- ☐ Far-UV absorption spectroscopy system development;
- ☐ Upgrade of existing high-resolution FTIR system.

NIR comb-calibrated frequency-stabilized cavity ring down spectrometer (CC-FS-CRDS)


SI traceable uncertainty of 0.3% for line intensity

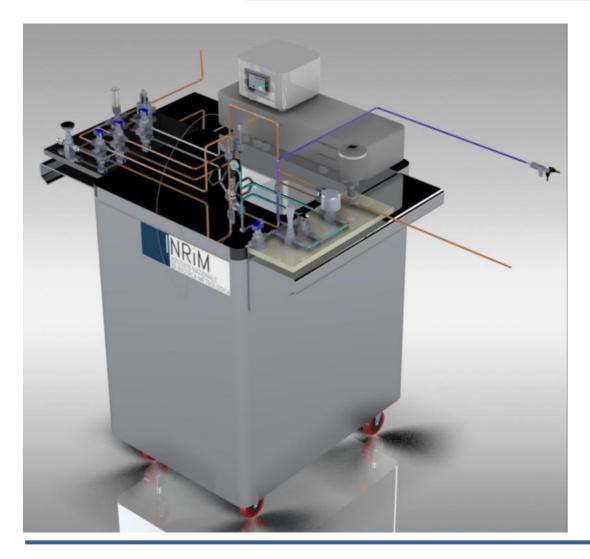
Contribution	Туре А	Type B
(k=1)	(%)	(%)
Statistical	0.5 - 3	
Line strength		0.3
Frequency scale		Negligible
Line shape model		0.1
Gas temperature		0.05
Partition function		0.04
Pressure		0.1
Overall combined uncertainty	0.5 – 3.1 %	

A compact and transportable far-UV system

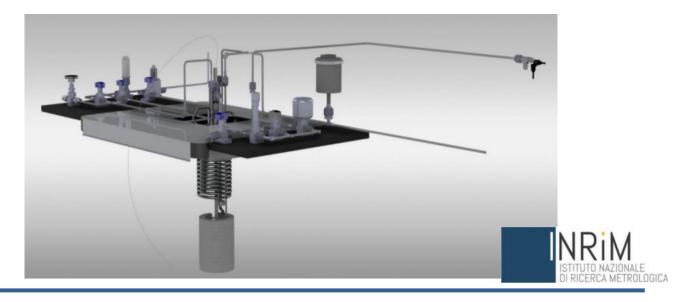
H₂O Cross section

is: require a good base nterferences with O2, O2)

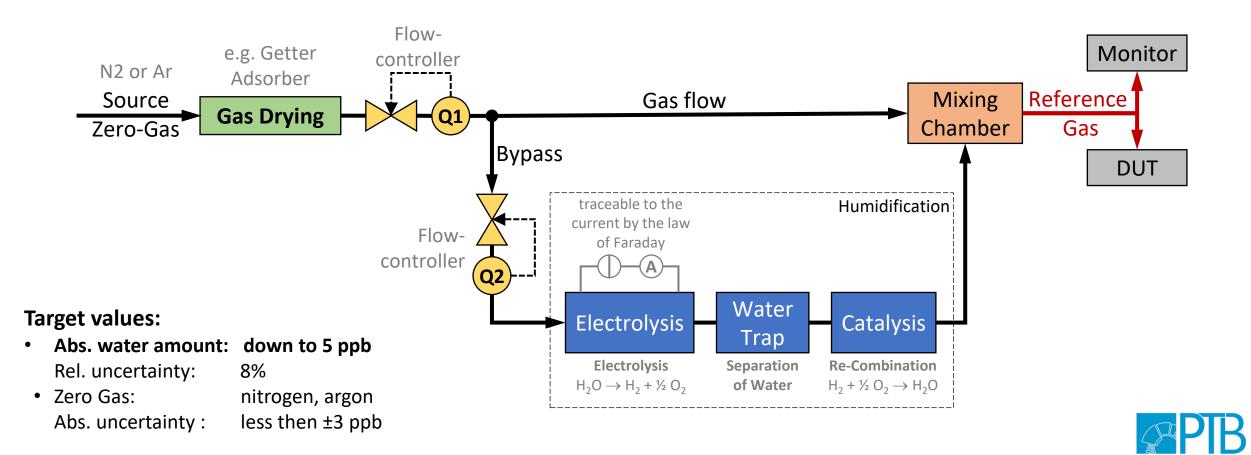
interferences and can "and "slow"


can clearly been seen

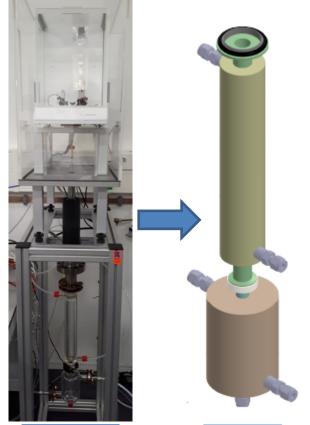
n x 100 cm



Robust traceability to trace water measurements in real humid gas mixtures


Range extension of the INRiM LFP generator

- Two-pressure, single-pass, humidity generator
- Frost-point temperature between -105 °C and -20 °C
- W.V. mole fraction between 5 ppb_v and 1038 ppm_v Pressure: 200 hPa to 6000 hPa
- Carrier gas: Nitrogen, Argon



Basic setup of the PTB Coulometric Trace Water Generator

Permeation system based on a passivated magnetic suspension balance

Previous design design

New

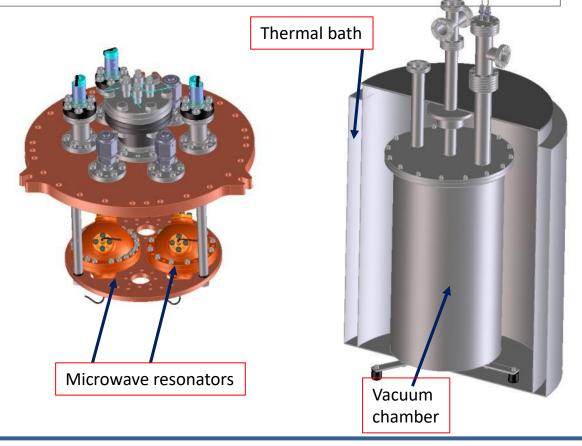
Set up a permeation system based on a passivated magnetic suspension balance to generate primary standard of water amount fractions following ISO 6145-10 and ISO 6145-7.

Target range: 50 nmol/mol up to 5 μmol/mol Matrix gases: N₂ and H₂

Current testing and validation of the new system

New chamber

Measurement of the enhancement factor in selected humid gas mixtures


Goal: to improve the measurements for water vapour enhancement factor in nitrogen, argon and hydrogen at selected temperatures and pressures, in the frost-point temperature range between -90 °C and -30 °C and pressure range from 0.1 MPa to above 1 MPa.

CNAM new microwave-based hygrometer

- Design of the new microwave hygrometer system operating to a pressure of 7-10 bar
- Completed the design of the new system (microwave resonators, the pressure vessel, the thermal shield and the vacuum chamber).
- The manufacturing procedure and the purchase process are in progress.

Transportable Frost Point Generator

Achievements so far:

- Transportable frost point generator
- Flow rates 1-to-5 litre/min on external closed loop
- Generated conditions down to -100°Cfp
- Independent test data down to -90°Cfp

System reproducibility

Figure 2: Values of the difference, ΔT , between the FPG Set Point and the Generated dew-point temperature value as measured by a reference chilled-mirror hygrometer at each test point between -90 °C and +1 °C.

Impact on industry and society

Key drivers

- Global market for industrial gas reached \$95 billion in 2019. It grew at 5 % per year.
- In Europe, in 2019, the gas market reached a value of about € 15 billion.
- European PV market is forecast for double-digit yearly growth. It grew by >100 % in 2019.
- OLEDs for next-generation flexible displays a booming market to be worth \$3 billion in near future.

Expected impact

- Early industrial impact expected on UHP gas manufacturing and supply.
- Improved, traceable, measurements of trace water in UHP gas production and supplies to serve
 advanced industrial sectors.
- On site calibrations/checks using transportable references for improved process efficiency.
- To sustain **innovation and competitiveness** of European instrument makers and service providers.
- To contribute to **renewable and sustainable technologies** solar, PV, low-energy light sources, etc.

Impact on metrology and standards

- Extended-range primary standards and measurement traceability for trace water in UHP gases.
- Integration of metrology infrastructure in Europe and leadership of European NMIs in this developing field.
- **Underpinning of metrology** of trace water for wider reference gases (e.g. N₂, H₂, Ar).
- **Better knowledge** of measurement techniques and of real humid gas mixtures.
- A CIPM key comparison enabled in the trace water range.

Stakeholders' engagement

A Steering Board (SB) made of key stakeholders, i.e., gas and equipment manufacturers, industry, standards developing organisations, international scientific associations has been established.

21 organisations have joined the SB so far

In summary, PROMETH2O will ...

- Improve trace water measurement methods and techniques [from 5 ppb to 5 ppm].
- Provide **robust traceability** to trace water measurements by developing suitable standards **down to 5 ppb** in N_2 , Ar and H_2 .
- Improve the present knowledge of thermophysical data of real humid gas mixtures.
- ❖ Demonstrate improved trace water measurement methods in industrially-relevant facilities.
- Facilitate the take up of the technology and the European-wide measurement infrastructure.

Upcoming events

PROGRAMME

SPONSORING

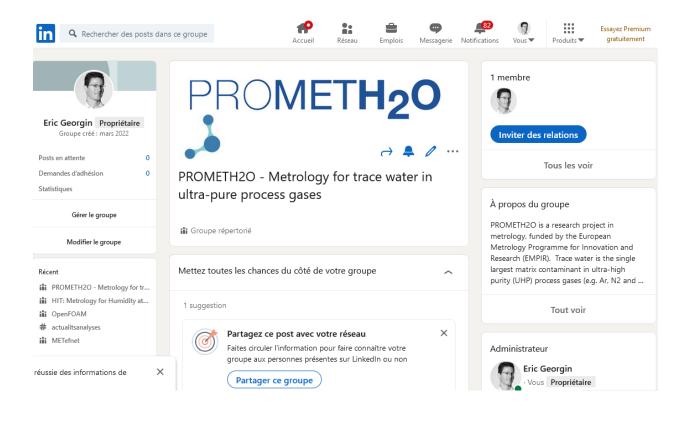
EXHIBITION

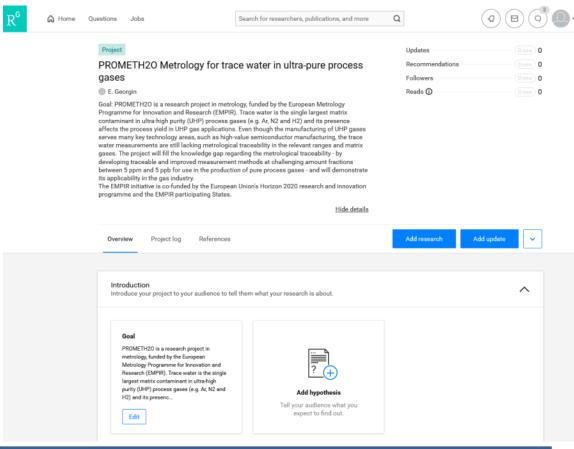
REGISTRATION

ABOUT US

USEFUL INFOS

NEWS


in 💆 🖂



Keep in touch

LinkedIn

Research gate

Keep in touch

Acces to JRP partners only

THE PROJECT

Overview

Trace water is the single largest matrix contaminant in ultra-high purity (UHP) process gases. Even though the manufacturing of UHP gases serves many of the key technology areas, such as high-value semiconductor manufacturing, trace water measurements are still lacking measurement traceability in the relevant ranges and matrix gases.

READ MORE -

www.prometh2o.eu

Thank you for your attention!