

Metrology for trace water in ultra-pure process gases 20IND06 PROMETH₂O

Project start on 1st June 2021

Vito Fernicola

WHY PRO·MET·H20 ?

PROcess METrology fot trace H_2O .

With a twist in the title you may read it **PROMETHEO**, the mythological Titan, god of forethought and wise counsel.

Need for the project

Semiconductor manufacturing - demands for UHP process gases with total impurities as low as few ppb.

Organic electronics - highly moisture-sensitive, needs ultra-dry manufacture and vapour barrier coatings.

UHP bulk process gases - need to be manufactured with total impurities below 1 ppm in volume (grade N6.0 or better).

Utility power generation - needs dry hydrogen (<5 ppm) to cool high-efficiency stationary generators.

Instrument manufacturers - need traceable standards to support their product development while endusers rely on them for instrumental testing and calibration.

Water vapour is the single largest matrix contaminant in ultra-high purity (UHP) process gases used in key technology areas.

Its measurement presents great challenges to both gas manufacturers and analytical instrument makers.

To fill the gap between the demand of traceable measurement and the available humidity standards currently limited at ~1 ppm.

To develop traceable and improved methods for trace water measurement relevant to the production and use of UHP gases.

To facilitate the uptake of the technology by the gas industry supply chain through exploiting knowledge and services developed in an European-wide metrology infrastructure.

- 1. Improve trace water **measurement methods and techniques**.
- 2. Provide **robust traceability** to trace water measurements by developing suitable primary standards.
- 3. Improve the present knowledge of **thermophysical data** of real humid gas mixtures.
- 4. **Demonstrate** improved trace water measurement methods in industrially-relevant facilities.
- 5. Facilitate **the take up** of the technology and measurement infrastructure developed in the project.

Project Outputs

- New measurement methods in the amount fraction range between 5 ppm and 5 ppb with relative standard uncertainty between 3 % and 8 %.
- ✓ New primary standards for trace water vapour in N₂, Ar and H₂ down to 5 ppb (or -105 °C frost point temperature) at pressures up to 1 MPa.
- ✓ New data and correlation equations of water vapour enhancement in N₂, Ar and H₂ in the temperature range from -30 °C to -90 °C and pressures up to 1 MPa.
- Demonstration in two selected industrial environments with real-time measurements and on-site calibrations.
- ✓ A toolkit of metrological solutions for robust measurement traceability in the production of ultra-pure process gases, by leveraging on improved standards and range-extended measurement capabilities.

Drivers

- Global market for industrial gas reached \$97 billion in 2018. It grew at 5 % per year.
- In Europe, in 2018, the gas market reached a value of about € 15.7 billion.
- European PV market is forecast for double-digit yearly growth. It grew by >100 % in 2019.
- OLEDs for next-generation flexible displays a booming market to be worth \$3 billion in near future.

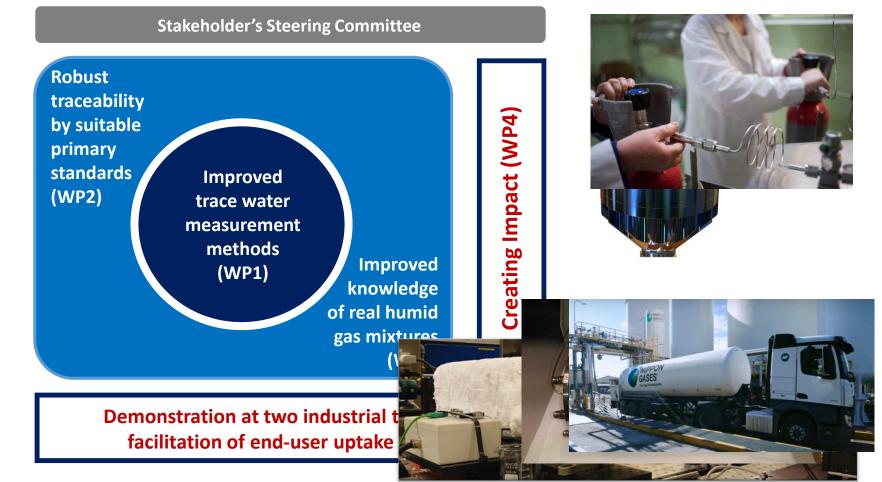

Impact

- Early industrial impact expected **on UHP gas manufacturing and supply.**
- Improved, traceable, measurements of trace water in UHP gas production and supplies to serve advanced industrial sectors.
- On site calibrations/checks using transportable references for improved process efficiency.
- Sustains innovation and competitiveness of European instrument makers and service providers.
- Contributes to renewable and sustainable technologies solar, PV, low-energy light sources, etc.

Impact on metrology and standards

- Extended-range primary standards and measurement traceability for trace water in UHP gases.
- Integration of metrology infrastructure in Europe and leadership of European NMIs in this developing field.
- Underpinning of metrology of trace water for wider reference gases (e.g. H₂, Ar).
- Better knowledge of measurement techniques and of real humid gas mixtures.
- A **CIPM comparison** enabled in the trace water range.

The consortium


19 partners from 12 countries – 242 person-months

PROMETH2O is supported by world leading manufacturers, international organisations and metrology leaders

Project implementation

Thank you for your attention!